在线讲座预告|探索集成混合光伏太阳能技术的协同作用和发展潜力

时间:2020-11-09 09:56来源:清华大学X-Reports会务组
  一、主讲嘉宾简介
  Christos N. Markides
  现任:帝国理工学院教授,清洁能源实验室主任,“Applied Thermal Engineering”主编。
  曾获:IMechE’s ‘Donald J. Groen’ 杰出论文奖,IChemE’s 全球最佳研究项目奖,帝国理工校长优秀教学奖(两项)。发表期刊论文250余篇,发表会议论文300余篇。
  研究方向:应用热力学,流体流动和传热/传质过程,用于热能回收、利用、转换和储存的高性能设备、技术和系统。
  二、会议信息
  时间:11月21日下午15:30-17:30 (北京时间)
  ZOOM会议号:677 3577 2214
  三、报告内容摘要
  Exploring the synergies and potential of integrated hybrid photovoltaic-X solar technologies "Making solar energy economical" is widely recognized as a global engineering grand challenge with the potential to enable the transition to a clean and sustainable energy future. By far the highest global growth and new investment in renewable technologies is being experienced by the solar sector. Although solar energy can be used to deliver multiple useful energy vectors, most solar technologies are designed for either electrical power generation or hot water provision. In fact, solar systems are projected to deliver the majority of the world’s electricity by 2050. An interesting aspect of photovoltaic (PV) panels in particular, is that they are limited in terms of space utilization as a consequence of being typically less than 20% efficient in delivering electricity from the sun’s incident energy. Most of the incident solar energy (>70%) is dissipated as heat in the solar cells, thus increasing their operating temperature and leading to a deterioration in their electrical performance.
  This considerable quantity of thermal energy, which would otherwise be lost to the environment and wasted, can be harvested and utilized effectively by advanced solar technologies, here referred to as ‘hybrid PV-X’, that integrate and use synergies in two or more underlying recovery and conversion processes to generate heating, cooling, power and/or clean water with an efficiency that is higher than separate, standalone systems. For example, in PV-thermal (PV-T) collectors, heat is removed from the PV cells by attaching a thermal absorber to the bottom the cells, thus simultaneously producing electricity and useful thermal energy from the same aperture area with a total efficiency (electrical plus thermal) in excess of 70%. The thermal output is usually limited to 60-80°C, which can be used for domestic hot water or air heating for households or commercial use.
  In order to unlock a wider range of applications driven by higher-temperature thermal energy, PV-X solar collector designs have been recently proposed in which spectral-splitting approaches have been applied in order to enable the delivery of useful heat at much higher temperatures, along with other useful energy vectors if this is required by the end user, while not sacrificing the electricity output of the PV cells. In this talk, we will present the underpinning principles of hybrid PV-X solar technologies, recent advances from the material to the system levels, and discuss their potential, along with the challenges and opportunities of further developing these technologies.
  报告内容摘要(中文) 
  探索一体化混合光伏-X太阳能技术的协同效应和潜力“使太阳能经济化”被广泛认为是一项全球工程重大挑战,有可能实现向清洁和可持续能源的未来过渡。
  到目前为止,全球增长和可再生技术新投资最高的是太阳能领域。虽然太阳能可以用来输送多种有用的能量载体,但大多数太阳能技术都是为发电或提供热水而设计的。事实上,预计到2050年,太阳能系统将提供全世界大部分的电力。特别是光伏(PV)发电,由于从太阳入射能量传输电能的效率通常低于20%,在空间利用方面受到限制。大多数入射太阳能(>70%)在太阳能电池中以热的形式散失,从而提高其工作温度并导致其电性能损失,这相当数量的热能被浪费了,并释放到环境中。如何利用这一部分热量呢?本研究即是用先进的太阳能技术(这里称为“混合光伏-X”)有效地收集和利用。该技术在两个或多个基本的回收和转换过程中整合并利用协同效应来产生加热、冷却和电力和/或清洁水,其效率高于单独的独立系统。例如,在光伏热(PV-T)集热器中,通过在电池底部安装一个热吸收器来从光伏电池中除去热量,从而同时从相同的孔径区域产生电能和有用的热能,总效率(电效率加上热效率)超过70%。热输出通常限制在60-80°C,可用于家庭或商业用途的生活热水或空气加热。
  为了打开由高温热能驱动的更广泛的应用,最近提出了PV-X太阳能集热器设计,其中应用了光谱分裂方法,以便能够在更高的温度下传递有用的热量,以及其他有用的能量矢量(如果需要的话)最终用户,同时不牺牲光伏电池的电力输出。在这篇演讲中,我们将介绍混合型PV-X太阳能技术的基本原理、从材料到系统层面的最新进展,并讨论其潜力,以及进一步开发这些技术的挑战和机遇。

注:本文章转载自清华大学X-Reports会务组,不代表本网观点立场。

热点排行榜

推荐图文