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ABSTRACT

Wind and solar power are central to China’s carbon neutrality strategy and
energy system transformation. This review adopts a system-oriented
perspective to examine the future development of wind, photovoltaic (PV), and
concentrated solar power (CSP), situating technological progress within a
broader framework that includes forecasting approaches, power system
flexibility, energy storage integration, and sectoral coupling. It summarizes the
spatial potential and projected capacity trajectories under carbon neutrality
goals, with estimates suggesting a combined capacity of 5,496 to 7,662 GW of
wind and solar power by 2060, constituting more than 83% of China’s total
installed power capacity. While notable progress has been made in
technological maturity and the reduction of power generation costs, supported
by robust domestic supply chains, persistent challenges remain across
technical and systemic dimensions, including limited generation efficiency, the
high cost of supporting energy storage technologies, and constraints on grid
flexibility and policy coordination. This review further proposes a strategic
roadmap for sustainable development, emphasizing the integrated deployment
of wind and solar as the dominant sources of power generation.
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1. Introduction

Decarbonizing energy systems is fundamental
to mitigating climate change, particularly given
the expected long-term increase in electricity
demand””. On September 22, 2020, China
pledged at the 75th United Nations General
Assembly to peak carbon emissions by 2030 and
achieve carbon neutrality by 2060°, marking a
major step towards a low-carbon future.
However, China’s power system has historically
relied heavily on coal”’, with thermal power
generation producing nearly 5.5 billion tons of
carbon emissions and continuing to increase
over the past two decades, now accounting for
more than 45 percent of national emissions”’.
This heavy dependance on coal-fired power
poses a major challenge to achieving the carbon
neutrality targets, making the shift to wind and
solar energy a critical step for building a “zero-
carbon” electricity system” "’

Over the past fifteen years, China has rapidly
expanded its wind and solar capacity, making
them central components of the national power
system. By the end of 2024, China’s combined
wind and solar installations had reached
1,407 GW, accounting for 42.0% of total power
capacity and contributing 15.4% of national
electricity consumption'”. As of the first quarter
of 2025, China’s wind and solar power capacity
reached 1,482 GW, surpassing coal-fired power
capacity (1,451 GW) for the first time'”. Looking
ahead, deployment of wind and solar power is
expected to accelerate as China pursues its long-
term decarbonization goals. This trajectory
aligns with the commitment made at the 18th
G20 Leaders’ Summit in September 2023 to
triple global renewable capacity by 2030"". In
this context, China’s continued expansion of
wind and solar power is set to play an
increasingly important role in supporting global
climate action'”"".

Amid the anticipated large-scale expansion of
wind and solar energy, improving their
efficiency and reliability will require continued
innovation in both core technologies and
supporting systems'®"”. The transition to wind
and solar power presents a unique set of
challenges. Unlike traditional thermal power
generation, the efficiency of wind and solar
power generation primarily depends on
technological advancements, such as the
efficiency of wind turbine generators and the
conversion efficiency of photovoltaic cells™”".
Wind and solar energy performance is also
influenced by factors like wind speed and solar
irradiance, which vary considerably across
different geographic locations and times of
day”™. In particular, given the long-standing
reliance on coal-fired power in China’s
electricity system, the large-scale rollout of wind
and solar requires careful system-level planning
to maintain reliability and meet residential
electricity demand during the transition”.

Against this backdrop, this review provides a
comprehensive examination of the develo-
pment trajectory of wind and solar power

(including both photovoltaic and concentrated
solar power, thereafter referred to as PV and
CSP, respectively) in China. It explores the
unique advantages and key challenges
associated with wind and solar power
deployment, while analyzing how technological
innovation and power system transformation
are creating new opportunities for future
growth. Drawing on existing studies and policy
related to China’s future power system, the
review outlines prospective installation
pathways and development timelines for wind
and solar energy. In doing so, it also examines
the development of supporting technologies for
wind and solar power, providing insights into
building a reliable, cost-effective, and
sustainable electricity system aligned with
China’s long-term decarbonization goals.

2. Wind and solar resource and
development patterns in China

The potential development of wind energy
technologies ranges from 29.3 to 45.1 trillion
KW-h***, and solar energy technologies from
66.5 to 92.9 trillion kW-h™*'. This theoretical
wind and solar potential far exceeds the
electricity demand for carbon neutrality, with
wind estimated at 4 to 6 times and solar at 9 to
13 times the 2020 consumption level (7.51
trillion kW-h)*’. These abundant wind and solar
resources form the basis for China’s large-scale
renewable energy deployment. By reviewing the
literature (Fig.1(a)), the installed capacity in
operation of wind and solar power in China is
forecasted to reach between 1,582 to 2,130 GW
by 2030"™, expected to soar to between 5,496
and 7,662 GW by 2060°*"%,

The large-scale expansion of wind, PV, and
CSP will serve as a key driver in reducing their
levelized cost of electricity (LCOE), thereby
enhancing their cost competitiveness relative to
coal-fired power (Fig.1(b)). When considering
only the generation-side LCOE, both onshore
wind and PV have already demonstrated certain
cost advantages. Considering the stability
requirements of power systems, previous
research” integrated the levelized cost of
storage (LCOS) for four-hour-duration lithium-
ion battery systems and calculated the
combined LCOE of wind/PV plus storage
systems. The results indicate that by 2030, the
LCOE of wind and solar power with storage is
expected to reach near parity with coal-fired
power. Specifically, the average LCOE of
onshore wind, offshore wind, centralized PV,
and distributed PV with battery storage is
projected to decline to 0.44, 0.55, 0.43, and 0.43
CNY/(kW-h), respectively, by 2030, and further
t0 0.33, 0.41, 0.28, and 0.35 CNY/(kW-h) by 2060.
The decline in LCOE driven by the large-scale
deployment and application of wind, solar, and
storage technologies will enhance the economic
viability of renewable-based power systems and
provide a solid foundation for their further
expansion.

However, regional disparities in wind and
solar resources and installations in China pose
challenges for the equitable expansion of the
nation’s power systems’”"’. The onshore wind
power potential is concentrated mainly in the
northern, northeastern, and northwestern
regions of China, while offshore wind power is
promising in east China and the southern
coastal areas. Advances in deep-sea wind
technologies and declining costs are expected to
unlock far-offshore wind potential in eastern
and southern China. The solar power potential
of PV is substantial in the northwest and north,
leading to a concentration of centralized PV
power installations in these regions. In contrast,
distributed PV power generation, which relies
on rooftop space, has a higher installation
volume in the northern, central, and eastern
regions of China'"*. Due to the requirement for
large land areas, the resources of CSP are
concentrated in the northern and northwestern
regions of China, with currently operational CSP
plants also mainly located in these areas.

To tackle regional disparities and the
integration challenges of intermittent wind and
solar power, it is essential to strengthen cross-
regional high-voltage transmission grids and
develop infrastructure that accommodates
regional resource variations . Energy storage
solutions, such as batteries, pumped hydro, and
flywheel energy storage, can effectively mitigate
the variability of wind and solar generation".
Additionally, expanding transmission infra-
structure, implementing smart grid technologies
with advanced forecasting, and adopting
demand-side management strategies like time-
of-use pricing will improve energy distribution
efficiency and grid stability .

3. Technological and economic
evolution of wind and solar power
in China

This section provides a comprehensive review
of the technological evolution of wind power,
PV, and CSP in China, emphasizing key
advancements in efficiency, scale, and cost
competitiveness. In addition to generation
technologies, it also examines the development
of forecasting techniques across multiple
timescales, which are essential for supporting
the stable and flexible operation of renewable
energy systems with high penetration levels.

3.1 Wind power technology

Since 1980, the evolution of wind power
technology in China has progressed through
several distinct phases: initial exploration of
wind power technologies and their applications,
substantiation and promotion, and preparation
for large-scale development and deployment’".
Currently, China’s wind power sector possesses
a mature industry chain with robust research
and development capabilities, characterized by
an ongoing shift towards larger-scale turbines™.
In 2024, the average unit capacity for newly
added onshore and offshore wind power

20f 12

DOI: 10.26599/TRCN.2025.9550010

Ruan, Z. W. et al. Technol Rev Carbon Neutrality, 2025, 1: 9550010


https://www.sciopen.com/journal/3007-6544
https://www.sciopen.com/journal/3007-6544
https://www.sciopen.com/journal/3007-6544
https://doi.org/10.26599/TRCN.2025.9550010

Review

https://www.sciopen.com/journal/3007-6544

ag 5,000 | o The 18" Group of 20 Leader’s Summit
O 4,000
2
S 3,000
g
© 2,000
B 1,098 1,179
T 1,000 . -2+ 1
1] [ : 1 2
S = R FLLRLR i —_ — [ |
2020 2030 20602020 2030 2060 2020 2030 2060 2020 2030 2060 2020 2030 2060|2020 2030 2060
Wind power Photovoltaic power | Coal-fired power Natural gas Nuclear power Hydropower
(including onshore ((including centralized| (including CCS) (including CCS)
and offshore and distributed
wind power) photovoltaic power)
b 1.6 1 — LCOE of coal-fired power = — LCOE without energy storage LCOE with Li-ion battery energy storage
1.4
<
E 1.2
; 1.0
5) 0.8 || _
L
o 0.6 -_—
So4 =
02f T - —_ = -

2020 2030 2060 2020 2030 2060 2020 2030 2060 2020 2030 2060 2020 2030 2060

Onshore wind power

Offshore wind power

power

Centralized photovoltaic | Distributed photovoltaic
power

Concentrated solar
power

Fig. 1. China’s wind power, photovoltaic (PV), and concentrated solar power (CSP) installation capacity, cost trends, and resource distribution. (a) The installed
capacity for various power sources in 2020, 2030, and 2060 under the prevailing scenarios of China’s carbon peaking and carbon neutrality goals ' ** ** *'. (b)

Projected levelized cost of electricity for wind, solar power, and systems combined with lithium-ion storage in 2020, 2030, and 206

projects reached 59 MW and 10 MW,
respectively (Fig. 2(a)). Wind power capacity is
projected to further increase in the future, with
onshore wind turbines expected to exceed 8
MW and offshore wind turbines reaching up to
17 MW by 2035, substantially enhancing wind
power generation efficiency”’. Looking ahead,
the continued scaling-up of wind turbines will
drive demand for lightweight design in key
components such as blades and nacelles,
underscoring the need for technological
innovation in composite materials and
structural optimization™.

The Renewable Energy Law enacted in 2006,
together with the zonal feed-in tariff subsidy
policy introduced in 20107, significantly
accelerated the deployment of wind power in
China. By the end of 2024, China’s cumulative
installed capacity reached 521 GW, accounting
for 45.9% of the global total (Fig. 2(b)). Onshore
wind has dominated this growth, accounting for
92.1% of total wind capacity in 2024. In contrast,
offshore wind development started gaining
momentum only after 2017, with installed
capacity rising from just 2.8 GW in 2017 to 41.3
GW by 2024. Regionally, the rapid expansion of
onshore wind in remote inland areas, combined
with the high population density and major
urban clusters in eastern China, has strained
grid infrastructure and contributed to power
curtailment issues™. To address the mismatch
between resource distribution and electricity
demand, large-scale and clustered offshore
wind deployment near eastern coastal demand

centers offers a more efficient solution. While
most of China’s current offshore wind capacity
remains near-shore, future expansion into
deeper and farther waters is anticipated due to
higher wind resource quality and reduced
spatial conflicts. This shift will not only ease
transmission pressures from west to east but
also enhance local power supplyST'Sg. Realizing
this potential will require breakthroughs in deep-
sea foundation design, floating turbine
technology, and corrosion-resistant materials,
which are essential for the reliable and cost-
effective development of far-offshore wind
powel‘ﬁa’m )

The prices of wind turbines in China have
dropped substantially since 2003, offering a
considerable cost advantage over those in other
major  wind turbine manufacturing
countries”””. This decline has helped reduce
capital expenditures and enhanced the overall
competitiveness of wind power development.
As shown in Fig. 2(c), the price of onshore wind
turbines fell from 8,000 CNY/KW in 2003 to
1,359 CNY/kW in 2024, compared to an average
of approximately 4,500 CNY/KW in other
countries and regions. Offshore wind turbine
prices have also decreased markedly,
particularly since 2016 when deployment
accelerated, reaching 2,800 CNY/kW in 2024,
while the average price in other countries and
regions remains above 6,000 CNY/kW
(Fig. 2(d)).

The rapid decline in wind turbines costs is the
primary driver behind the reduction in the cost

0 27,37,38,48-50

of wind-generated electricity”’, with onshore
LCOE falling by 70% since 2006 and offshore
LCOE dropping by 56% since 2010, With the
ongoing shift toward larger wind turbine
models™, continued cost reductions in wind
power are anticipated, mainly due to falling
costs of key components'**', Excluding storage
costs, the LCOE for onshore wind projects will
range from 0.17 to 0.22 CNY/(kW-h) between
2025 and 2030 (Fig.1(b)), while offshore wind
projects are expected to have an LCOE of 0.30 to
0.38 CNY/(kW-h) over the same period. Looking
ahead to 2060, the LCOE is expected to range
from 0.1 to 0.15 CNY/(kW-h) for onshore wind
projects and between 0.19 and 0.20 CNY/(kW-h)
for offshore wind projects.

3.2 PV technology

The evolution of China’s PV technology and
industry encapsulates a journey from humble
beginnings with small-scale applications to a
period of growth propelled by overseas
markets”, followed by a phase of expansive
development driven by synergistic demand
from both global and domestic markets, leading
to the current focus on quality and efficiency™.
The rapid development of China’s PV industry
has positioned Chinese PV as a global core
product’’. This growth has also driven
advancements in PV cell development and
increased conversion efficiencies”’. Figure 3(a)
illustrates the overall improvement in the
comprehensive efficiency of China’s mass-

68

produced PV cells from 2008 to 2024 ™.
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Fig. 2. Average newly installed capacity, total installed capacity, and unit price changes of wind power. (a) Average capacity of newly installed onshore and offshore
wind turbines in China from 2012 to 2024. (b) Total installed capacity of onshore and offshore wind power in China from 2005 to 2024, including its share of global
installed capacity (pie chart). (c) Onshore wind turbine prices in China and other countries and regions (2003-2024, excluding towers and foundations). (d) Offshore
wind turbine prices in China and other countries and regions (2015-2024, excluding towers and foundations).

Since the implementation of the zonal feed-in-
tariff subsidy policy in China in 2010, the
country’s PV installed capacity has experienced
rapid growth (Fig. 3(b)). By the end of 2024,
China’s cumulative PV installed capacity had
reached 886 GW, accounting for 41.3% of the
global total. Notably, PV installation surged
between 2022 and 2024, even surpassing wind
power additions during this period. Within this
overall growth, distributed PV has played an
increasingly important role. Since 2017,
distributed PV installations have expanded
rapidly, with recent growth rates markedly
outpacing those of centralized systems. By 2024,
distributed PV accounted for 42.3% of China’s
total PV capacity. This shift toward distributed

PV not only enhances the localized utilization of
solar resources, but also contributes to energy
security and helps reduce the burden on
transmission infrastructure, particularly in
delivering power from resource-rich northern
and northwestern regions to the more energy-
intensive eastern and southern areas of the
c ountrng’m.

Continuous advancements in PV technology,
coupled with economies of scale, have markedly
accelerated the reduction in PV system costs
(Fig. 3(c))'>"". Between 2010 and 2024, both PV
module and system prices have seen substantial
declines, with system costs encompassing not
only module prices but also inverters, mounting
structures, construction, and installation
expenses. By 2024, the price of PV modules in

China had dropped to 0.84 CNY/W, compared
to an average of 1.44 CNY/W in other countries
and regions. Meanwhile, the price of PV systems
(excluding storage) in China fell to 3.16 CNY/W.
The decline in module and system costs is also
driving down the LCOE for PV generation.
Without accounting for energy storage,
projections indicate that by 2030, the LCOE for
centralized PV generation in China will further
decrease to less than 0.15 CNY/(kW-h), while
that of distributed PV generation will see
reductions to less than 020 CNY/(kW-h).
Moreover, it is anticipated that by 2060 the
LCOE for both centralized and distributed PV
generation will decrease to less than 0.15
CNY/(kw-h) (Fig. 1(b)).
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Fig. 3. Changes in the production efficiency of China’s main PV cells, total installed capacity of PV, and cost trends of PV technology in China. (a) Efficiency of PV
cells from 2008 to 2024 in China. (b) Total installed capacity of centralized and distributed PV power in China from 2005 to 2024, including its share of global installed
capacity (pie chart). (c) Price trends of PV modules and PV systems in China and other countries and regions from 2010 to 2024.

3.3 CSP technology

CSP technology is another pivotal element
within renewable energy, playing a crucial role
in power generation, energy storage, heating
and carbon reduction” ", With its first CSP
experimental system established only in 2004",
and the CSP is currently in the early stages of
broad-scale deployment in China’. China’s
new CSP generation demonstration projects
achieve a high domestic sourcing rate, with up
to 95% of equipment and materials being locally
produced”’. This local production provides
China with a notable cost advantage. Currently,
China’s operational CSP capacity constitutes 8%
of the global total, placing it fourth worldwide
(Fig. 4(a)). China’s dominance in CSP

technology arises from the advantages of tower-
type power plants (Fig. 4(b)), which excel in
high temperatures, operational conditions, and
efficiency, making them the primary
configuration for China’s CSP generation .

The establishment of CSP plants is not only
related to solar radiation resources but also to
the adaptability of natural geographic
conditions, such as land slope, type, elevation,
and road accessibility”®. Considering these
conditions, the northwestern and northern
regions of China, which possess abundant solar
radiation resources and favorable land and
geographic conditions, are ideal for CSP plants
construction. Notably, the Xinjiang, Inner
Mongolia, Qinghai, Tibet, and Gansu provinces

collectively account for 95% of the national
potential for CSP installations’’. Reflecting the
distribution of solar thermal resources, 538 MW
of China’s currently operational CSP capacity is
concentrated in the northern and northwestern
regions. However, the existing installed capacity
is still far below its potential, indicating growth
opportunities for solar thermal power in China.
Moreover, the development of CSP in China will
not only contribute as a power source but also
enhance the overall stability and reliability of the
energy system by integrating with local wind
and PV power through its thermal storage
capabilities®™ ™.

The LCOE for new CSP generation projects in
China is notably higher than that for wind and
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PV power, ranging from approximately 0.7 to 1.0
CNY/(lW-h)™®. The discrepancy primarily
stem from the hefty upfront investment
required for CSP technology”’. For instance, a
standard 100 MW CSP station equipped with
8 hours of thermal storage costs between 12,000
and 17,000 CNY/KW (Fig. 4(c)). A considerable
portion of this initial cost, approximately 77%, is
dedicated to the concentrators, heat absorption,
storage, and exchange systems™*. The elevated
costs of key equipment and materials are further
exacerbated by the relatively small scale of
domestic CSP projects and market volatility due
to policy fluctuations. An analytical breakdown
of the cost structure for CSP stations in China
has identified three primary dynamics
influencing the cost of electricity: economy of
scale, operational and maintenance expenses,

and the contributions of technological
advancements and management
efficiencies™”’. Projections suggest a downward

trend for LCOE of CSP in China, with
expectations for it to drop below 0.70
CNY/(kW-h) by 2030%’. Between 2050 and 2060,
the cost is expected to decrease to an LCOE
between 0.35 and 0.45 CNY/(kW-h)™.

Both CSP and PV technologies contribute to
the expansion of renewable energy in China,
but their competitiveness varies by region and
application. CSP excels in areas with high direct
normal irradiance (DNI), such as western and
northern China, offering dispatchable power
through thermal storage and supporting grid
stability. However, its higher costs, land
requirements, and reliance on DNI-rich regions
limit its broader adoption. In contrast, PV
systems are characterized by lower costs, higher
technical maturity, shorter construction periods,
and broader geographic suitability, making it
applicable for most regions.

3.4 Wind and solar power generation
forecasting technology

The meteorological risks associated with climate
changes and the inherent variability of wind and
solar power introduce uncertainties in grid
integration”"'”, In China, advancing wind
and solar power generation forecasting
technology is crucial due to regional
mismatches between renewable energy
resources and electricity demand, as well as
limited power system flexibility'”’. Accurate
forecasting enables precise planning and

reliable operations within the power system,
optimizing energy deployment and storage,
reducing energy expenses, and enhancing
revenue. Future improvements in forecasting
capabilities will rely heavily on advances in

numerical  weather  prediction,  power
forecasting algorithms'*'", and the integration
of artificial intelligence in meteorological
modeling' ™"

Forecasting across different timescales serves
diverse yet complementary purposes, each
offering practical value in supporting the
operation, planning, and resilience of renewable
power systems (Fig. 5). Short- and ultra-short-
term forecasting integrates satellite data, ground-
based observations, and machine learning with
operational data from wind and solar power
plants to support real-time dispatch and
enhance system flexibility'””'”. Medium- and
long-term forecasting relies on numerical
simulations and sub-seasonal to seasonal
(S2S) models for scheduling and strategic
planning'*'"’, Across all timescales, statistical
extrapolation, machine learning, and Al have
demonstrated significant advantages over
traditional numerical models, particularly in
terms of computational efficiency, accuracy,
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uncertainty quantification, and multi-scale
prediction'""'"*. Notably, Al-based models such
as Huawei Cloud’s Pangu-Weather and Google’s
Neural GCM have substantially accelerated
forecasting speed while maintaining, and in
some cases improving, prediction accuracy,
highlighting the transformative potential of data-
driven approaches in weather and climate
modeling'""'"*. These advances are expected to
enhance power system management, strategic
planning, and climate resilience, especially in
complex and data-rich operational
environments.

4. A system-oriented development
roadmap for wind and solar power
in China

By analyzing the parallel technological
trajectories of wind and solar power, this section
outlines the future requirements for installed
capacity, core technological advancements, and
the need for coordinated development with
supporting industries. In recent years, the faster-
than-expected expansion of wind and solar
power in China has created substantial
challenges for grid integration, which in turn
has affected the operational efficiency of these
resources. Despite significant progress in wind
and solar power technologies, systemic barriers
remain, such as limited generation efficiency,
inadequate energy storage, and insufficient grid
flexibility, which continue to constrain the
reliable and cost-effective deployment of
renewable energy’”'"”. In response, this section
adopts a system-oriented perspective to explore
future development pathways for wind and
photovoltaic technologies, emphasizing an
integrated roadmap to guide their sustainable
expansion within China’s broader energy
transition framework.

4.1 2025-2030
With China’s carbon peak target and renewable
energy goals set at the G20 Summit, the total
installed capacity of wind and PV is expected to
reach 2,200 to 2,400 GW by 2030 (Fig. 6(a)). This
projection is based on international policy
targets, in contrast to the optimization model-
based estimates in Section 2.1. In practice,
installation rates over the past two years have
already outpaced most modeled scenarios,
suggesting a faster-than-expected trajectory.
Achieving this target will require an average
annual addition of 150 GW of new wind and PV
capacity from 2025 to 2030, alongside the
commercial development of CSP and integrated
renewable energy systems to optimize the
development model of renewables and ease
pressure on the power grid, thereby facilitating a
smoother transition of the electricity system.
Enhancing energy efficiency through
materials innovation and technological
advancement is the primary focus at the current
stage of wind and solar power generation
technologies. For wind power, this involves
prioritizing the development of large-scale,
lightweight blades, modular and intelligent
gearboxes, as well as integrated and modular
inverter control systems. Advancing offshore
wind into deeper waters offers a viable pathway
to access more stable wind resources, reduce
costs, and enable large-scale deployment
through improved grid integration. In solar PV
technologies, the emphasis is placed on
industrializing high-efficiency cells, advancing
module encapsulation techniques, and
developing large-size, ultra-thin monocry-
stalline silicon wafers to improve power
generation efficiency’'“'"”. Exploring rooftop
deployment and integration with industrial
parks can also reduce land use pressures and
lower costs associated with large-scale ground-

based projects. For CSP, continued techno-
logical innovation and the establishment of
stable pricing mechanisms are crucial to
enhancing cost competitiveness and scaling up
capacity””"'®""". Furthermore, to strengthen the
overall quality of the industry and foster
technological innovation, it is essential to
establish public verification platforms and
technical standards for wind and solar power
products in China, while aligning these
standards with international practices'*'",
Integrating “wind and solar + various
industries” such as agriculture, hydrogen
production, and transportation to promote
green electricity direct supply mechanisms
offers a promising solution to enhance
load-side adaptability to fluctuations in wind
and solar power, thereby alleviating grid
pressure'**"**, The coordinated development of
energy storage supports the creation of a
resilient power system, helping to protect grid
stability by providing sufficient capacity at
power plants. This fosters a positive feedback
loop, enabling the acceleration of renewable
energy expansion and enhancing energy
security. In this context, accurate forecasting will
play a key role in facilitating these integrations,
ensuring the optimized utilization of green

energy'”.

4.2 2030-2050
This period marks a profound transformation in
China’s power system, shifting the focus from
achieving carbon peak to reaching carbon
neutrality. The combined installed capacity of
wind and solar power is projected to reach 4,700
to 6,731 GW by 2050, reflecting a two- to
fourfold increase relative to the expected levels
in 2030.

To support the continued growth of wind and
solar power, it is recommended that

Common forecasting methods and application scenarios of forecasting types at different scales

Machine learning and artificial intelligence

Forecasting

Statistical extrapolation tools
Sky imagery Numerical weather prediction $28 model Seasonal [ Climate
models models
Satellite data
1 hour 6 hours 15 days 2 months Years
Ultra-
< short » Medium to Medium-
term Short-term —»|«—— o torm ——>|+— term ——+|+«—— Long-term——
Se—
Ramp-rate Contract trading: Contract trading: Contract trading:
control day ahead rolling trading | monthly trading yearly trading
Application

Inverter
control
Power generation management
Real-time deployment

Intraday trading/
spot trading

Maintenance plan

Congestion
management

Scheduling

Reserve planning

Power station planning

Accident analysis

Fig. 5. Forecasting methods and their application scenarios at different scales for wind and solar power.
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PV modules.
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environmentally friendly materials of
wind power.

« Advance the maturity of the CSP
industry chain and technology.

« Promote wind and solar power with
energy storage and hydrogen
production technologies for the new

collaborative development of

wind and solar power

« The deep integration of wind and
solar power with hydrogen, storage,
and new power systems.

« Establish eco-friendly power stations.

« Promote commercial application of
intelligent and digital technologies in
wind and solar power system.

« Achieve commercialization of large-
scale CSP generation.

« Realize the coordinated development
of CSP with multi-energy integration.

+ Realize commercial adoption of wind

and solar power + hydrogen production.

+ Wind and solar power achieve
mature development within the new

stable development of
wind and solar power

* Wind and solar power is the main
sources of power system.

* Zero-carbon and green development
of wind and solar power industry chain.

* Enhance the systematic application
of intelligent and digital technologies in
wind and solar power.
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application of CSP with multi-energy
complementarity.

+ Accomplish mature and efficient
application of wind and solar energy
storage, hydrogen production
technologies.

power system.

2025

power system.

2030

2050

2060

Fig. 6. Future roadmap for wind and solar power in China. (a) Summary of China’s wind and PV installed capacity development path from 2025 to 2060 under the
carbon peak and carbon neutrality goals. The data are sourced from the reports by CET”, GEIDCO®, RMI”, and Statista”’, as well as research by He et al.”* and
Wei etal.””. (b) Key stages and technology development of wind and solar power in China.

advancements in generation efficiency and
digital applications be prioritized, as these will
drive further improvements in power output
and integration'”. The establishment of
intelligent platforms for wind and solar power is
essential for seamless integration with the grid,
enhancing system coordination and reliability,
while the development of minute-level meteo-
rological forecasting technologies is crucial for
optimizing  this integration, improving
responsiveness to extreme weather events, and
minimizing operational disruptions'”’. Unlike
wind and solar PV power, CSP has progressed
more slowly toward commercialization.
Therefore, achieving large-scale industria-
lization and commercialization of CSP at this
stage will require targeted incentive policies and
international collaboration®**'*,

This period will witness the large-scale
deployment of wind and solar power, requiring
deep integration with a multi-energy
complementary grid, load-side management,

and energy storage technologies to enhance
stability, flexibility, and efficiency in renewable
energy utilization. A key approach to achieving
this integration involves establishing wind and
PV station bases in synergy with CSP facilities.
By leveraging the storage capabilities of CSP,
these integrated bases will enhance system
resilience and operational efficiency, supporting
the development of a robust multi-energy
system™"*. Among the critical applications of
“wind-solar + various industries”, large-
scale wind-solar hydrogen production stands
out as a strategic focus, especially between
2040 and 2050. This strategy can effectively
connect power generation with end-use sectors
such as industry and transportation, optimizing
energy efficiency, alleviating grid pressure,
and enhancing the flexibility of the energy

131
system

4.3 2050-2060
This period represents a pivotal phase in the
pursuit of China’s carbon neutrality goals.

During this decade, wind and solar power are
set to become the primary sources for the power
system, advancing the deep decarbonization of
the energy sector. By 2060, China’s installed
wind power capacity is projected to reach
between 2,500 and 3,817 GW, while installed
solar power capacity is anticipated to range
from 2,997 to 3,845 GW (Fig. 6(a)).

Throughout this decade, digital technologies
in wind and solar power will achieve full
maturity, providing systematic support for the
smart evolution of the power system'*”. Utilizing
big data for optimized day-ahead scheduling of
wind and solar resources will drive the full-scale
intelligence of the power system. This involves
seamlessly integrating sources, the grid, loads,
and storage, and deeply incorporating emerging
resources like virtual power plants with flexible
assets such as energy storage and hydrogen
production, thereby enhancing the system’s
operational efficiency and reliability.
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