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ABSTRACT
Wind  and  solar  power  are  central  to  China’s  carbon  neutrality  strategy  and
energy  system  transformation.  This  review  adopts  a  system-oriented
perspective to examine the future development of wind, photovoltaic (PV), and
concentrated  solar  power  (CSP),  situating  technological  progress  within  a
broader  framework  that  includes  forecasting  approaches,  power  system
flexibility, energy storage integration, and sectoral coupling. It  summarizes the
spatial  potential  and  projected  capacity  trajectories  under  carbon  neutrality
goals,  with  estimates  suggesting  a  combined  capacity  of  5,496  to  7,662  GW  of
wind  and  solar  power  by 2 060,  constituting  more  than  83%  of  China’s  total
installed  power  capacity.  While  notable  progress  has  been  made  in
technological maturity and the reduction of power generation costs, supported
by  robust  domestic  supply  chains,  persistent  challenges  remain  across
technical and systemic dimensions, including limited generation efficiency, the
high  cost  of  supporting  energy  storage  technologies,  and  constraints  on  grid
flexibility  and  policy  coordination.  This  review  further  proposes  a  strategic
roadmap for sustainable development, emphasizing the integrated deployment
of wind and solar as the dominant sources of power generation.
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� Sustainable wind and solar development calls for coordinated

policies and a systematic approach to reshape China’s

energy system.
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1.  Introduction
Decarbonizing  energy  systems  is  fundamental
to  mitigating  climate  change,  particularly  given
the  expected  long-term  increase  in  electricity
demand1,2.  On  September  22,  2020,  China
pledged  at  the  75th  United  Nations  General
Assembly to peak carbon emissions by 2030 and
achieve  carbon  neutrality  by 2 0603,  marking  a
major  step  towards  a  low-carbon  future.
However, China’s power system has historically
relied  heavily  on  coal4,5,  with  thermal  power
generation  producing  nearly 5.5  billion  tons  of
carbon  emissions  and  continuing  to  increase
over  the  past  two  decades,  now  accounting  for
more  than  45  percent  of  national  emissions6,7.
This  heavy  dependance  on  coal-fired  power
poses a major challenge to achieving the carbon
neutrality  targets,  making  the  shift  to  wind  and
solar  energy a  critical  step for  building a “zero-
carbon” electricity system8-11.

Over the past fifteen years, China has rapidly
expanded  its  wind  and  solar  capacity,  making
them central components of the national power
system.  By  the  end  of  2024,  China’s  combined
wind  and  solar  installations  had  reached
1,407  GW,  accounting  for  42.0%  of  total  power
capacity  and  contributing  15.4%  of  national
electricity consumption12.  As of  the first  quarter
of 2025, China’s wind and solar power capacity
reached  1,482  GW,  surpassing  coal-fired  power
capacity (1,451 GW) for the first time13. Looking
ahead,  deployment  of  wind  and  solar  power  is
expected to accelerate as China pursues its long-
term  decarbonization  goals.  This  trajectory
aligns  with  the  commitment  made  at  the  18th
G20  Leaders’ Summit  in  September  2023  to
triple  global  renewable  capacity  by  203014.  In
this  context,  China’s  continued  expansion  of
wind  and  solar  power  is  set  to  play  an
increasingly important role in supporting global
climate action15-17.

Amid the anticipated large-scale expansion of
wind  and  solar  energy,  improving  their
efficiency  and  reliability  will  require  continued
innovation  in  both  core  technologies  and
supporting  systems18,19.  The  transition  to  wind
and  solar  power  presents  a  unique  set  of
challenges.  Unlike  traditional  thermal  power
generation,  the  efficiency  of  wind  and  solar
power  generation  primarily  depends  on
technological  advancements,  such  as  the
efficiency  of  wind  turbine  generators  and  the
conversion  efficiency  of  photovoltaic  cells20,21.
Wind  and  solar  energy  performance  is  also
influenced by factors  like wind speed and solar
irradiance,  which  vary  considerably  across
different  geographic  locations  and  times  of
day22-24.  In  particular,  given  the  long-standing
reliance  on  coal-fired  power  in  China’s
electricity system, the large-scale rollout of wind
and solar requires careful system-level planning
to  maintain  reliability  and  meet  residential
electricity demand during the transition7,25.

Against  this  backdrop,  this  review provides  a
comprehensive  examination  of  the  develo-
pment  trajectory  of  wind  and  solar  power

(including  both  photovoltaic  and  concentrated
solar  power,  thereafter  referred  to  as  PV  and
CSP,  respectively)  in  China.  It  explores  the
unique  advantages  and  key  challenges
associated  with  wind  and  solar  power
deployment, while analyzing how technological
innovation  and  power  system  transformation
are  creating  new  opportunities  for  future
growth.  Drawing  on  existing  studies  and  policy
related  to  China’s  future  power  system,  the
review  outlines  prospective  installation
pathways  and  development  timelines  for  wind
and  solar  energy.  In  doing  so,  it  also  examines
the development of supporting technologies for
wind  and  solar  power,  providing  insights  into
building  a  reliable,  cost-effective,  and
sustainable  electricity  system  aligned  with
China’s long-term decarbonization goals.

2.  Wind  and  solar  resource  and
development patterns in China

The  potential  development  of  wind  energy
technologies  ranges  from  29.3  to  45.1  trillion
kW·h26-28,  and  solar  energy  technologies  from
66.5  to  92.9  trillion  kW·h29-31.  This  theoretical
wind  and  solar  potential  far  exceeds  the
electricity  demand  for  carbon  neutrality,  with
wind estimated at 4 to 6 times and solar at 9 to
13  times  the  2020  consumption  level  (7.51
trillion kW·h)29. These abundant wind and solar
resources form the basis  for  China’s  large-scale
renewable energy deployment. By reviewing the
literature  (Fig.1(a)),  the  installed  capacity  in
operation  of  wind  and  solar  power  in  China  is
forecasted  to  reach  between  1,582  to  2,130  GW
by  203032-35,  expected  to  soar  to  between  5,496
and 7,662 GW by 2 06033,34,36.

The  large-scale  expansion  of  wind,  PV,  and
CSP  will  serve  as  a  key  driver  in  reducing  their
levelized  cost  of  electricity  (LCOE),  thereby
enhancing their cost competitiveness relative to
coal-fired  power  (Fig.1(b)).  When  considering
only  the  generation-side  LCOE,  both  onshore
wind and PV have already demonstrated certain
cost  advantages.  Considering  the  stability
requirements  of  power  systems,  previous
research37,38 integrated  the  levelized  cost  of
storage  (LCOS)  for  four-hour-duration  lithium-
ion  battery  systems  and  calculated  the
combined  LCOE  of  wind/PV  plus  storage
systems.  The  results  indicate  that  by  2030,  the
LCOE  of  wind  and  solar  power  with  storage  is
expected  to  reach  near  parity  with  coal-fired
power.  Specifically,  the  average  LCOE  of
onshore  wind,  offshore  wind,  centralized  PV,
and  distributed  PV  with  battery  storage  is
projected to decline to 0.44, 0.55, 0.43, and 0.43
CNY/(kW·h),  respectively,  by  2030,  and  further
to 0.33, 0.41, 0.28, and 0.35 CNY/(kW·h) by 2060.
The  decline  in  LCOE  driven  by  the  large-scale
deployment and application of wind, solar, and
storage technologies will enhance the economic
viability of renewable-based power systems and
provide  a  solid  foundation  for  their  further
expansion.

However,  regional  disparities  in  wind  and
solar  resources  and  installations  in  China  pose
challenges  for  the  equitable  expansion  of  the
nation’s  power  systems39,40.  The  onshore  wind
power  potential  is  concentrated  mainly  in  the
northern,  northeastern,  and  northwestern
regions  of  China,  while  offshore  wind  power  is
promising  in  east  China  and  the  southern
coastal  areas.  Advances  in  deep-sea  wind
technologies and declining costs are expected to
unlock  far-offshore  wind  potential  in  eastern
and  southern  China.  The  solar  power  potential
of PV is substantial in the northwest and north,
leading  to  a  concentration  of  centralized  PV
power installations in these regions. In contrast,
distributed  PV  power  generation,  which  relies
on  rooftop  space,  has  a  higher  installation
volume  in  the  northern,  central,  and  eastern
regions of China41,42. Due to the requirement for
large  land  areas,  the  resources  of  CSP  are
concentrated in the northern and northwestern
regions of China, with currently operational CSP
plants also mainly located in these areas.

To  tackle  regional  disparities  and  the
integration  challenges  of  intermittent  wind  and
solar  power,  it  is  essential  to  strengthen  cross-
regional  high-voltage  transmission  grids  and
develop  infrastructure  that  accommodates
regional  resource  variations43.  Energy  storage
solutions, such as batteries, pumped hydro, and
flywheel  energy storage,  can effectively mitigate
the  variability  of  wind  and  solar  generation44.
Additionally,  expanding  transmission  infra-
structure, implementing smart grid technologies
with  advanced  forecasting,  and  adopting
demand-side  management  strategies  like  time-
of-use  pricing  will  improve  energy  distribution
efficiency and grid stability45,46.

3.  Technological  and  economic
evolution  of  wind  and  solar  power
in China
This  section  provides  a  comprehensive  review
of  the  technological  evolution  of  wind  power,
PV,  and  CSP  in  China,  emphasizing  key
advancements  in  efficiency,  scale,  and  cost
competitiveness.  In  addition  to  generation
technologies,  it  also examines the development
of  forecasting  techniques  across  multiple
timescales,  which  are  essential  for  supporting
the  stable  and  flexible  operation  of  renewable
energy systems with high penetration levels.

3.1  Wind power technology
Since  1980,  the  evolution  of  wind  power
technology  in  China  has  progressed  through
several  distinct  phases:  initial  exploration  of
wind power technologies and their applications,
substantiation and promotion,  and preparation
for  large-scale  development  and  deployment51.
Currently, China’s wind power sector possesses
a  mature  industry  chain  with  robust  research
and  development  capabilities,  characterized  by
an ongoing shift towards larger-scale turbines52.
In  2024,  the  average  unit  capacity  for  newly
added  onshore  and  offshore  wind  power
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projects  reached 5.9  MW  and  10  MW,
respectively  (Fig.  2(a)).  Wind  power  capacity  is
projected  to  further  increase  in  the  future,  with
onshore  wind  turbines  expected  to  exceed  8
MW and offshore wind turbines reaching up to
17  MW  by  2035,  substantially  enhancing  wind
power  generation  efficiency53.  Looking  ahead,
the  continued  scaling-up  of  wind  turbines  will
drive  demand  for  lightweight  design  in  key
components  such  as  blades  and  nacelles,
underscoring  the  need  for  technological
innovation  in  composite  materials  and
structural optimization54.

The Renewable Energy Law enacted in 2006,
together  with  the  zonal  feed-in  tariff  subsidy
policy  introduced  in  201055,  significantly
accelerated  the  deployment  of  wind  power  in
China.  By  the  end  of  2024,  China’s  cumulative
installed  capacity  reached  521  GW,  accounting
for 45.9% of the global total (Fig. 2(b)). Onshore
wind has dominated this growth, accounting for
92.1% of total wind capacity in 2024. In contrast,
offshore  wind  development  started  gaining
momentum  only  after  2017,  with  installed
capacity rising from just 2.8 GW in 2017 to 41.3
GW by 2024. Regionally, the rapid expansion of
onshore wind in remote inland areas, combined
with  the  high  population  density  and  major
urban  clusters  in  eastern  China,  has  strained
grid  infrastructure  and  contributed  to  power
curtailment  issues56.  To  address  the  mismatch
between  resource  distribution  and  electricity
demand,  large-scale  and  clustered  offshore
wind deployment near  eastern coastal  demand

centers  offers  a  more  efficient  solution.  While
most  of  China’s  current  offshore  wind  capacity
remains  near-shore,  future  expansion  into
deeper  and  farther  waters  is  anticipated  due  to
higher  wind  resource  quality  and  reduced
spatial  conflicts.  This  shift  will  not  only  ease
transmission  pressures  from  west  to  east  but
also  enhance  local  power  supply57-59.  Realizing
this potential will require breakthroughs in deep-
sea  foundation  design,  floating  turbine
technology,  and  corrosion-resistant  materials,
which  are  essential  for  the  reliable  and  cost-
effective  development  of  far-offshore  wind
power60,61.

The  prices  of  wind  turbines  in  China  have
dropped  substantially  since  2003,  offering  a
considerable cost advantage over those in other
major  wind  turbine  manufacturing
countries27,62.  This  decline  has  helped  reduce
capital  expenditures  and  enhanced  the  overall
competitiveness  of  wind  power  development.
As shown in Fig. 2(c), the price of onshore wind
turbines  fell  from  8,000  CNY/kW  in  2003  to
1,359 CNY/kW in 2024, compared to an average
of  approximately  4,500  CNY/kW  in  other
countries  and  regions.  Offshore  wind  turbine
prices  have  also  decreased  markedly,
particularly  since  2016  when  deployment
accelerated,  reaching  2,800  CNY/kW  in  2024,
while  the  average  price  in  other  countries  and
regions  remains  above  6,000  CNY/kW
(Fig. 2(d)).

The rapid decline in wind turbines costs is the
primary driver behind the reduction in the cost

of  wind-generated  electricity63,  with  onshore
LCOE falling by 70% since 200626,50 and offshore
LCOE  dropping  by  56%  since 201050.  With  the
ongoing  shift  toward  larger  wind  turbine
models53,  continued  cost  reductions  in  wind
power  are  anticipated,  mainly  due  to  falling
costs  of  key  components49,64.  Excluding  storage
costs,  the  LCOE  for  onshore  wind  projects  will
range  from  0.17  to  0.22  CNY/(kW·h)  between
2025  and  2030  (Fig.1(b)),  while  offshore  wind
projects are expected to have an LCOE of 0.30 to
0.38 CNY/(kW·h) over the same period. Looking
ahead  to 2 060,  the  LCOE  is  expected  to  range
from  0.1  to  0.15  CNY/(kW·h)  for  onshore  wind
projects and between 0.19 and 0.20 CNY/(kW·h)
for offshore wind projects.

3.2  PV technology
The  evolution  of  China’s  PV  technology  and
industry  encapsulates  a  journey  from  humble
beginnings  with  small-scale  applications  to  a
period  of  growth  propelled  by  overseas
markets65,  followed  by  a  phase  of  expansive
development  driven  by  synergistic  demand
from both global and domestic markets, leading
to  the  current  focus  on quality  and efficiency66.
The  rapid  development  of  China’s  PV  industry
has  positioned  Chinese  PV  as  a  global  core
product17.  This  growth  has  also  driven
advancements  in  PV  cell  development  and
increased  conversion  efficiencies67. Figure  3(a)
illustrates  the  overall  improvement  in  the
comprehensive  efficiency  of  China’s  mass-
produced PV cells from 2008 to 202468.
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Since the implementation of the zonal feed-in-
tariff  subsidy  policy  in  China  in  201055,  the
country’s PV installed capacity has experienced
rapid  growth  (Fig.  3(b)).  By  the  end  of  2024,
China’s  cumulative  PV  installed  capacity  had
reached  886  GW,  accounting  for  41.3%  of  the
global  total.  Notably,  PV  installation  surged
between  2022  and  2024,  even  surpassing  wind
power  additions  during  this  period.  Within  this
overall  growth,  distributed  PV  has  played  an
increasingly  important  role.  Since  2017,
distributed  PV  installations  have  expanded
rapidly,  with  recent  growth  rates  markedly
outpacing those of centralized systems. By 2024,
distributed  PV  accounted  for  42.3%  of  China’s
total  PV  capacity.  This  shift  toward  distributed

PV not only enhances the localized utilization of
solar  resources,  but  also  contributes  to  energy
security  and  helps  reduce  the  burden  on
transmission  infrastructure,  particularly  in
delivering  power  from  resource-rich  northern
and  northwestern  regions  to  the  more  energy-
intensive  eastern  and  southern  areas  of  the
country69,70.

Continuous advancements in PV technology,
coupled with economies of scale, have markedly
accelerated  the  reduction  in  PV  system  costs
(Fig.  3(c))10,71.  Between 2010 and 2024, both PV
module and system prices have seen substantial
declines,  with  system  costs  encompassing  not
only module prices but also inverters, mounting
structures,  construction,  and  installation
expenses.  By  2024,  the  price  of  PV  modules  in

China  had  dropped  to  0.84  CNY/W,  compared
to an average of 1.44 CNY/W in other countries
and regions. Meanwhile, the price of PV systems
(excluding storage) in China fell to 3.16 CNY/W.
The decline in module and system costs is  also
driving  down  the  LCOE  for  PV  generation.
Without  accounting  for  energy  storage,
projections  indicate  that  by  2030,  the  LCOE  for
centralized  PV  generation  in  China  will  further
decrease  to  less  than  0.15  CNY/(kW·h),  while
that  of  distributed  PV  generation  will  see
reductions  to  less  than  0.20  CNY/(kW·h).
Moreover,  it  is  anticipated  that  by 2 060 the
LCOE  for  both  centralized  and  distributed  PV
generation  will  decrease  to  less  than  0.15
CNY/(kW·h) (Fig. 1(b)).
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3.3  CSP technology
CSP  technology  is  another  pivotal  element
within  renewable  energy,  playing  a  crucial  role
in  power  generation,  energy  storage,  heating
and  carbon  reduction72–74.  With  its  first  CSP
experimental system established only in 200475,
and  the  CSP  is  currently  in  the  early  stages  of
broad-scale  deployment  in  China76.  China’s
new  CSP  generation  demonstration  projects
achieve  a  high  domestic  sourcing  rate,  with  up
to 95% of equipment and materials being locally
produced77.  This  local  production  provides
China with a notable cost advantage. Currently,
China’s operational CSP capacity constitutes 8%
of  the  global  total,  placing  it  fourth  worldwide
(Fig.  4(a)).  China’s  dominance  in  CSP

technology arises from the advantages of tower-
type  power  plants (Fig.  4(b)),  which  excel  in
high  temperatures,  operational  conditions,  and
efficiency,  making  them  the  primary
configuration for China’s CSP generation78.

The  establishment  of  CSP  plants  is  not  only
related  to  solar  radiation  resources  but  also  to
the  adaptability  of  natural  geographic
conditions,  such  as  land  slope,  type,  elevation,
and  road  accessibility79,80.  Considering  these
conditions,  the  northwestern  and  northern
regions of China, which possess abundant solar
radiation  resources  and  favorable  land  and
geographic  conditions,  are  ideal  for  CSP  plants
construction.  Notably,  the  Xinjiang,  Inner
Mongolia,  Qinghai,  Tibet,  and Gansu provinces

collectively  account  for  95%  of  the  national
potential  for  CSP  installations81.  Reflecting  the
distribution of solar thermal resources, 538 MW
of China’s currently operational CSP capacity is
concentrated in the northern and northwestern
regions. However, the existing installed capacity
is  still  far  below  its  potential,  indicating  growth
opportunities for solar thermal power in China.
Moreover, the development of CSP in China will
not  only  contribute  as  a  power  source  but  also
enhance the overall stability and reliability of the
energy  system  by  integrating  with  local  wind
and  PV  power  through  its  thermal  storage
capabilities82-84.

The LCOE for new CSP generation projects in
China  is  notably  higher  than  that  for  wind  and
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PV power, ranging from approximately 0.7 to 1.0
CNY/(kW·h)85,86.  The  discrepancy  primarily
stem  from  the  hefty  upfront  investment
required  for  CSP  technology87.  For  instance,  a
standard  100  MW  CSP  station  equipped  with
8 hours of thermal storage costs between 12,000
and  17,000  CNY/kW  (Fig.  4(c)).  A  considerable
portion of this initial cost, approximately 77%, is
dedicated to the concentrators, heat absorption,
storage, and exchange systems86,88. The elevated
costs of key equipment and materials are further
exacerbated  by  the  relatively  small  scale  of
domestic CSP projects and market volatility due
to  policy  fluctuations.  An  analytical  breakdown
of  the  cost  structure  for  CSP  stations  in  China
has  identified  three  primary  dynamics
influencing  the  cost  of  electricity:  economy  of
scale,  operational  and  maintenance  expenses,
and  the  contributions  of  technological
advancements  and  management
efficiencies88,89. Projections suggest a downward
trend  for  LCOE  of  CSP  in  China,  with
expectations  for  it  to  drop  below  0.70
CNY/(kW·h) by 203089. Between 2050 and 2 060,
the  cost  is  expected  to  decrease  to  an  LCOE
between 0.35 and 0.45 CNY/(kW·h)89.

Both  CSP  and  PV  technologies  contribute  to
the  expansion  of  renewable  energy  in  China,
but  their  competitiveness  varies  by  region  and
application. CSP excels in areas with high direct
normal  irradiance  (DNI),  such  as  western  and
northern  China,  offering  dispatchable  power
through  thermal  storage  and  supporting  grid
stability.  However,  its  higher  costs,  land
requirements, and reliance on DNI-rich regions
limit  its  broader  adoption.  In  contrast,  PV
systems are characterized by lower costs, higher
technical maturity, shorter construction periods,
and  broader  geographic  suitability,  making  it
applicable for most regions.

3.4  Wind  and  solar  power  generation
forecasting technology
The meteorological risks associated with climate
changes and the inherent variability of wind and
solar  power  introduce  uncertainties  in  grid
integration66,90−100.  In  China,  advancing  wind
and  solar  power  generation  forecasting
technology  is  crucial  due  to  regional
mismatches  between  renewable  energy
resources  and  electricity  demand,  as  well  as
limited  power  system  flexibility101.  Accurate
forecasting  enables  precise  planning  and

reliable  operations  within  the  power  system,
optimizing  energy  deployment  and  storage,
reducing  energy  expenses,  and  enhancing
revenue.  Future  improvements  in  forecasting
capabilities  will  rely  heavily  on  advances  in
numerical  weather  prediction,  power
forecasting algorithms102−104, and the integration
of  artificial  intelligence  in  meteorological
modeling105,106.

Forecasting across different timescales serves
diverse  yet  complementary  purposes,  each
offering  practical  value  in  supporting  the
operation, planning, and resilience of renewable
power  systems  (Fig.  5).  Short- and  ultra-short-
term forecasting integrates satellite data, ground-
based observations,  and machine learning with
operational  data  from  wind  and  solar  power
plants  to  support  real-time  dispatch  and
enhance  system  flexibility107,108.  Medium- and
long-term  forecasting  relies  on  numerical
simulations  and  sub-seasonal  to  seasonal
(S2S)  models  for  scheduling  and  strategic
planning109,110.  Across  all  timescales,  statistical
extrapolation,  machine  learning,  and  AI  have
demonstrated  significant  advantages  over
traditional  numerical  models,  particularly  in
terms  of  computational  efficiency,  accuracy,
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uncertainty  quantification,  and  multi-scale
prediction111,112. Notably, AI-based models such
as Huawei Cloud’s Pangu-Weather and Google’s
Neural  GCM  have  substantially  accelerated
forecasting  speed  while  maintaining,  and  in
some  cases  improving,  prediction  accuracy,
highlighting the transformative potential of data-
driven  approaches  in  weather  and  climate
modeling111,112.  These advances are expected to
enhance  power  system  management,  strategic
planning,  and  climate  resilience,  especially  in
complex  and  data-rich  operational
environments.

4.  A  system-oriented  development
roadmap for wind and solar power
in China
By  analyzing  the  parallel  technological
trajectories of wind and solar power, this section
outlines  the  future  requirements  for  installed
capacity, core technological advancements, and
the  need  for  coordinated  development  with
supporting industries. In recent years, the faster-
than-expected  expansion  of  wind  and  solar
power  in  China  has  created  substantial
challenges  for  grid  integration,  which  in  turn
has  affected  the  operational  efficiency  of  these
resources.  Despite  significant  progress  in  wind
and solar power technologies,  systemic barriers
remain,  such  as  limited  generation  efficiency,
inadequate energy storage, and insufficient grid
flexibility,  which  continue  to  constrain  the
reliable  and  cost-effective  deployment  of
renewable energy39,113.  In response,  this  section
adopts a system-oriented perspective to explore
future  development  pathways  for  wind  and
photovoltaic  technologies,  emphasizing  an
integrated  roadmap  to  guide  their  sustainable
expansion  within  China’s  broader  energy
transition framework.

4.1  2025–2030
With China’s carbon peak target and renewable
energy  goals  set  at  the  G20  Summit,  the  total
installed capacity of wind and PV is expected to
reach 2,200 to 2,400 GW by 2030 (Fig. 6(a)). This
projection  is  based  on  international  policy
targets,  in  contrast  to  the  optimization  model-
based  estimates  in  Section  2.1.  In  practice,
installation  rates  over  the  past  two  years  have
already  outpaced  most  modeled  scenarios,
suggesting  a  faster-than-expected  trajectory.
Achieving  this  target  will  require  an  average
annual addition of 150 GW of new wind and PV
capacity  from  2025  to  2030,  alongside  the
commercial development of CSP and integrated
renewable  energy  systems  to  optimize  the
development  model  of  renewables  and  ease
pressure on the power grid, thereby facilitating a
smoother transition of the electricity system.

Enhancing  energy  efficiency  through
materials  innovation  and  technological
advancement is the primary focus at the current
stage  of  wind  and  solar  power  generation
technologies.  For  wind  power,  this  involves
prioritizing  the  development  of  large-scale,
lightweight  blades,  modular  and  intelligent
gearboxes,  as  well  as  integrated  and  modular
inverter  control  systems.  Advancing  offshore
wind into deeper waters offers a viable pathway
to  access  more  stable  wind  resources,  reduce
costs,  and  enable  large-scale  deployment
through  improved  grid  integration.  In  solar  PV
technologies,  the  emphasis  is  placed  on
industrializing  high-efficiency  cells,  advancing
module  encapsulation  techniques,  and
developing  large-size,  ultra-thin  monocry-
stalline  silicon  wafers  to  improve  power
generation  efficiency114,115.  Exploring  rooftop
deployment  and  integration  with  industrial
parks  can  also  reduce  land  use  pressures  and
lower  costs  associated  with  large-scale  ground-

based  projects.  For  CSP,  continued  techno-
logical  innovation  and  the  establishment  of
stable  pricing  mechanisms  are  crucial  to
enhancing cost  competitiveness  and scaling up
capacity87,116,117.  Furthermore,  to  strengthen  the
overall  quality  of  the  industry  and  foster
technological  innovation,  it  is  essential  to
establish  public  verification  platforms  and
technical  standards  for  wind  and  solar  power
products  in  China,  while  aligning  these
standards with international practices118,119.

Integrating “wind  and  solar  +  various
industries” such  as  agriculture,  hydrogen
production,  and  transportation  to  promote
green  electricity  direct  supply  mechanisms
offers  a  promising  solution  to  enhance
load-side  adaptability  to  fluctuations  in  wind
and  solar  power,  thereby  alleviating  grid
pressure120–124. The coordinated development of
energy  storage  supports  the  creation  of  a
resilient  power  system,  helping  to  protect  grid
stability  by  providing  sufficient  capacity  at
power  plants.  This  fosters  a  positive  feedback
loop,  enabling  the  acceleration  of  renewable
energy  expansion  and  enhancing  energy
security. In this context, accurate forecasting will
play  a  key  role  in  facilitating  these  integrations,
ensuring  the  optimized  utilization  of  green
energy125.

4.2  2030–2050
This period marks a profound transformation in
China’s  power  system,  shifting  the  focus  from
achieving  carbon  peak  to  reaching  carbon
neutrality.  The  combined  installed  capacity  of
wind and solar power is projected to reach 4,700
to  6,731  GW  by  2050,  reflecting  a  two- to
fourfold  increase  relative  to  the  expected  levels
in 2030.

To support the continued growth of wind and
solar  power,  it  is  recommended  that
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advancements  in  generation  efficiency  and
digital  applications  be  prioritized,  as  these  will
drive  further  improvements  in  power  output
and  integration126.  The  establishment  of
intelligent platforms for wind and solar power is
essential  for  seamless  integration  with  the  grid,
enhancing  system  coordination  and  reliability,
while  the  development  of  minute-level  meteo-
rological  forecasting  technologies  is  crucial  for
optimizing  this  integration,  improving
responsiveness  to  extreme  weather  events,  and
minimizing  operational  disruptions127.  Unlike
wind  and  solar  PV  power,  CSP  has  progressed
more  slowly  toward  commercialization.
Therefore,  achieving  large-scale  industria-
lization  and  commercialization  of  CSP  at  this
stage will require targeted incentive policies and
international collaboration83,128,129.

This  period  will  witness  the  large-scale
deployment of wind and solar power, requiring
deep  integration  with  a  multi-energy
complementary  grid,  load-side  management,

and  energy  storage  technologies  to  enhance
stability,  flexibility,  and  efficiency  in  renewable
energy  utilization.  A  key  approach  to  achieving
this  integration  involves  establishing  wind  and
PV  station  bases  in  synergy  with  CSP  facilities.
By  leveraging  the  storage  capabilities  of  CSP,
these  integrated  bases  will  enhance  system
resilience and operational efficiency, supporting
the  development  of  a  robust  multi-energy
system84,130.  Among  the  critical  applications  of
“wind-solar  +  various  industries”,  large-
scale  wind-solar  hydrogen  production  stands
out  as  a  strategic  focus,  especially  between
2040  and  2050.  This  strategy  can  effectively
connect power generation with end-use sectors
such as industry and transportation, optimizing
energy  efficiency,  alleviating  grid  pressure,
and  enhancing  the  flexibility  of  the  energy
system131.

4.3  2050–2 060
This  period  represents  a  pivotal  phase  in  the
pursuit  of  China’s  carbon  neutrality  goals.

During  this  decade,  wind  and  solar  power  are
set to become the primary sources for the power
system,  advancing  the  deep  decarbonization  of
the  energy  sector.  By 2 060,  China’s  installed
wind  power  capacity  is  projected  to  reach
between  2,500  and  3,817  GW,  while  installed
solar  power  capacity  is  anticipated  to  range
from 2,997 to 3,845 GW (Fig. 6(a)).

Throughout  this  decade,  digital  technologies
in  wind  and  solar  power  will  achieve  full
maturity,  providing  systematic  support  for  the
smart evolution of the power system132. Utilizing
big data for optimized day-ahead scheduling of
wind and solar resources will drive the full-scale
intelligence  of  the  power  system.  This  involves
seamlessly  integrating  sources,  the  grid,  loads,
and storage, and deeply incorporating emerging
resources  like  virtual  power  plants  with  flexible
assets  such  as  energy  storage  and  hydrogen
production,  thereby  enhancing  the  system’s
operational efficiency and reliability.
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Wei et al.47. (b) Key stages and technology development of wind and solar power in China.
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