2025 中国太阳能热锐电大会

China Concentrating Solar Power Conference 2025

8月13日-15日

题目: 固体颗粒吸热器研究及应用方案

报告人: 白凤武

单位: 中国科学院电工研究所

- ① 研究背景
- ② 研究历程
- ③ 成果拓展应用
- 4 致谢

固体颗粒吸热器的研究意义

超临界CO2布雷顿循环

- 800 °C时对应的超临界CO₂布雷顿循环的循环效率超过50%
- 集热系统传热流体温度达到800°C

运行温度低于 800℃ ● 水/蒸汽

- 导热油
- 硝酸基熔融盐

腐蚀性大

- ●金属钠、钾
- 碳酸盐、氯盐

传热特性差 不能用于储热

● 空气

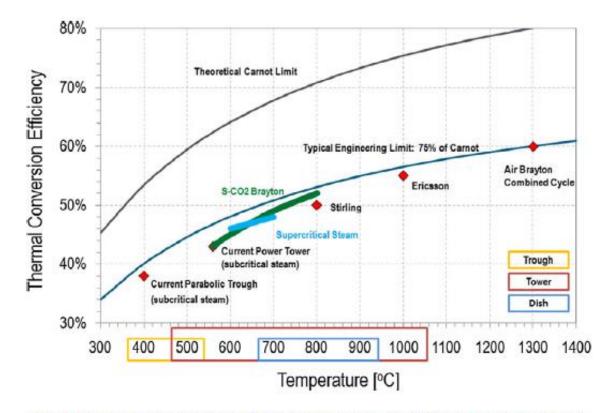
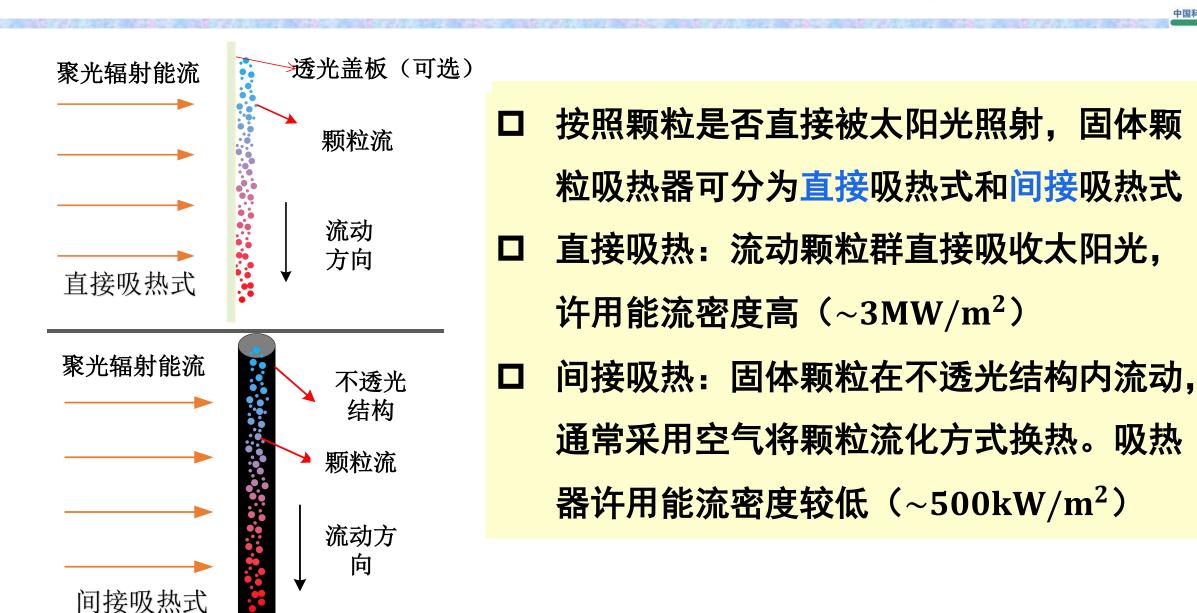
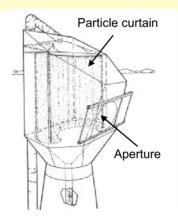


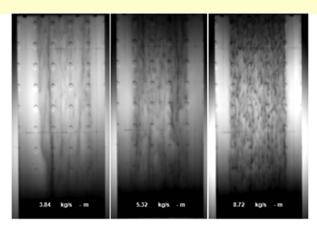
Fig. 2. Turbine cycles with potential application for CSP (Siegel et al., 2014).


Siegel, N., Gross, M., Ho, C., Phan, T., Yuan, J., 2014. Physical properties of solid particle thermal energy storage media for concentrating solar power applications. Energy Procedia 49, 1015–1023. http://dx.doi.org/10.1016/ j.egypro.2014.03.109. ISSN 1876-6102.

固体颗粒:来源广泛、**成本低、化学稳定性高、无腐蚀性、工作温区宽**(从室温到1300℃)、**储热密度高**

固体颗粒吸热器主要技术方式


固体颗



固体颗粒吸热器主要技术方式

□ 直接加热

Particle Receiver

Particle Receiver

Gate valve

down silo

美国、澳大利亚、沙特直接下落式

德国旋转窑

浙大的斜坡下落式

□ 间接加热

法国列管稠密悬浮颗粒

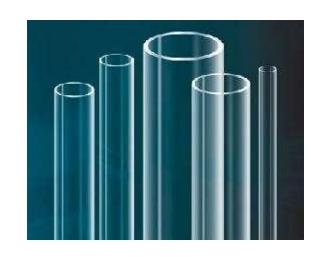
- 40根管(4m长) (2023, CNRS, Alex Le Gal1)
- 采光口: 3m×2.6m
- 设计功率: 1000 kWth, Themis Solar

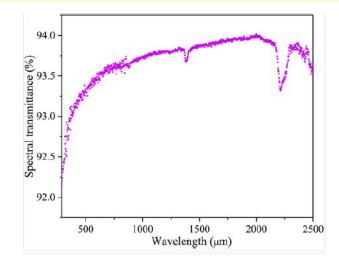
Tower,停留时间: 73~229s

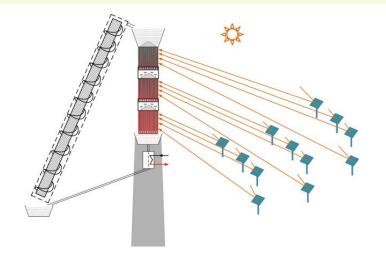
- 输出温度: 217~495℃
 - ▶ 热效率: 35 to 63%.

课题目标:具有较高热效率,颗粒流动过程可控,无大风带走颗粒风险,适合大功率实施,成本可接受。

方案选择:


(1) 加热方式:太阳光可以直接照射到颗粒表面


(2) 流动可控:石英玻璃管内布置颗粒流道,底部阀门开度控制流量


(3) 颗粒损失: 颗粒密闭在石英管内

(4) 大功率:通过石英管束并联和管束分级串联扩大吸热面积

(5) 成本:石英玻璃管工业级基础好,50元/kWth。对于一个300MW吸热器,石英管成本1500万元。

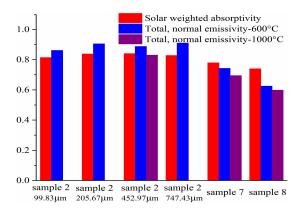
2.1 颗粒选择

目标: 高吸收率、高导热性、成本可控

沙漠沙:成本低、性能差

Number-	Particle name-	Mean diameter(µm)		
Sample 1-	Al ₂ O ₃	758.69		
Sample 2	SiC.	1024.33		
Sample 3	Quartz sand	1158.57		
Sample 4	Desert sand	164.36		
Sample 5	River sand	605.87		
Sample 6	Yellow ceramsite sand	693.13		
Sample 7	Grey ceramsite sand-	717.88		
Sample 8	Ceramics.	360.51		
Sample 9	Black copper slag-	1014.27		

左: 热处理前右: 热处理后



Number	Specific heat (kJ/kg	· K)
Sample 1.	0.9157-	
ample 2	1.0193	
ample 3.	0.9711-	
ample 4	1.0695	
ample 5.	1.0558-	
Sample 6.	0.8822	
Sample 7.	0.8077-	
Sample 8	1.0944	

1	
	sample 2(99.83 μm)
0.6 -	sample 2(205.67μm)
	sample 2(452.97μm)
	sample 2(747.43μm)
0.5 -	- + - sample 2(91 µm) ^[73]
ETC(W/(m·k))	sample 2(215.7μm) ^[73]
5 0.4 -	x
≥ 0.47	
5 1	and the same of th
ÈI .	And the second second
0.3 -	and the same
	Later - "
0.2	<i>(</i>
	0 100 200 300 400 500 600 700
	Temperature(°C)

Table 5 Solar weighted absorptivity of samples

Number-	As received.	After heat treatment
Sample 1	28.52%	25.46%
Sample 2	77.04%	81.57%
Sample 3.	30.55%	22.73%
Sample 4.	61.98%	55.75%
Sample 5.	56.1%	52.06%
Sample 6.	58.3%	50.1%
Sample 7.	72.34%	77.9%
Sample 8.	59.73%	74%
Sample 9.	87.56%	83.6%

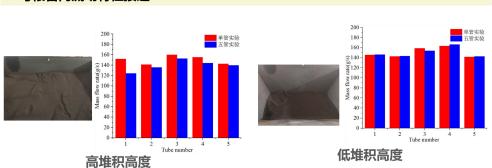
工业陶瓷颗粒:性能可调,成本低于3000元/吨

- □ 粒径范围: 100 μm-1000 μm;
- □ 太阳光谱吸收率 >85%;
- □ 常温到900℃下平均比热 > 900 J/(kg·K);
- □ 视密度≥ 3200kg/m³;
- □ 堆积密度≥1750kg/m³;
- □ 陶粒砂球度>0.9;
- □ 陶粒砂具有较好的纯度,不含细粉等杂质。

2.2 颗粒流动性

目标:流道结构需满足顺畅流道前提下传热效果最优,实施简单,可批量化。

实验测试:管间流道互不干扰



00000

实验后管束入口 实验台

- 口流动特性和堆积高度无关
- 口 每根管内流动特征接近

单管实验与理论计算: 判断其流动稳定性

□ 获得了实现颗粒流稳定流动的关联式

$$q_{m,\text{semi-annular}} = 21 \times d_p^{-0.14} \left(\delta - k d_p \right)^{1.5}$$

	流动状态	q _{m,somi annular} /q _{m,Model-3}	流动状态	$q_{m,semi-annular}/q_{m,Model-3}$		流动状态	q _{m,semi-annular} /q _{m,Model-3}	流动状态	q _{m,scmi-armalar} /q _{m,Mod}
粒径(µm) (6=5 mm)		(8=4 mm)		粒径(µm)	(δ=5 mm)		(δ=4 mm)		
149	稳定	3.86	稳定	2.72	149	"[型"	1.92	"I型"	1.35
297	稳定	2.22	稳定	1.53	297	"152"	1.08	"田型"	0.75
642	稳定	1.79	稳定	1.18	642	"H35"	0.82	"п#!"	0.54
1216	稳定	1.39	"H2E"	0.81	1216	"田型"	0.61	"田型"	0.35
1359	稳定	1.28	流动堵塞	_	1359	"H#9"	0.56	流动堵塞	-

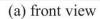
 $q_{m.\text{semi-annular}}/q_{m.\text{Model-3}} \ge 2.72$

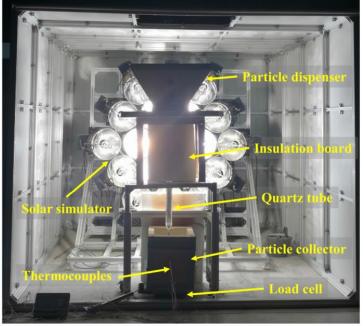
对 particle size a $(149 \ \mu m)$ 对 particle size b $(297 \ \mu m)$

对 particle size c (642 µm)

 $q_{m,\text{semi-annular}}/q_{m,\text{Model-3}} \ge 1.53$

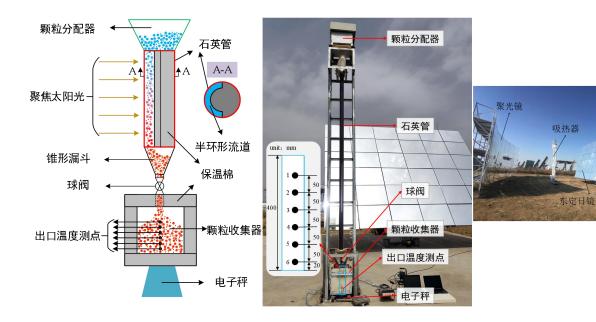
 $q_{m,\text{semi-annular}}/q_{m,\text{Model-3}} \ge 1$




2.3 单管热态实验

目标: 找规律、验证理论模型

太阳模拟器实验



(b) back view

太阳炉实验(加热段4m长)

2.4 单管吸热器理论模型

目标: 多工况模拟获取参数影响规律

理论模型

控制方程
$$\rho_b C_p U_s \frac{\partial T}{\partial x} = \frac{\lambda_{eff}}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) - \alpha \frac{\partial S(r)}{\partial r}; \quad 0 < x < L, R_{in} - \delta < r < R_{in}$$
$$S(r) = \dot{Q}(x, z) e^{-\beta(R_{in} - r)}$$

颗粒层内的辐射能流密度分布

热颗粒与石英管内壁的辐射热损

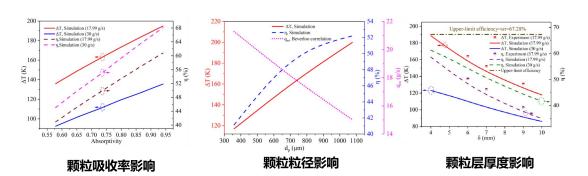
$$\begin{split} \rho_b C_p U_s \frac{\partial T}{\partial x} &= \alpha \cdot \frac{\partial S(r)}{\partial r} \Big|_{z=z_k} + \frac{\partial}{\partial r} \bigg(\lambda_{\rm eff} \frac{\partial T}{\partial r} \bigg) - \frac{\partial Q_{\rm rad1}}{\partial r}; \quad r = R_m \end{split}$$

$$\begin{matrix} \mathcal{D}_b C_p U_s \frac{\partial T}{\partial x} &= \frac{\partial}{\partial r} \bigg(\lambda_{\rm eff} \frac{\partial T}{\partial r} \bigg); \quad r = R_m - \delta \end{split}$$

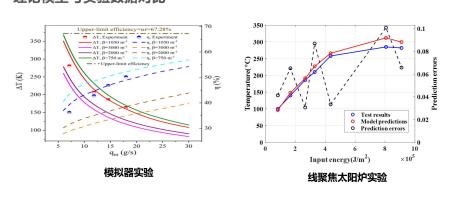
$$T = T_{\rm sur}; \quad x = 0$$

颗粒出口温度

$$T_{out} = \frac{1}{2K - 1} \left(\sum_{1}^{2K - 1} \left(\frac{1}{n} \sum_{1}^{n} T(m, j) \right) \right|_{\hat{O}(x, z) = \hat{O}(x, z_{k})}$$


$$\eta = \frac{Q_{abs}}{Q_{input}}$$

吸热器效率

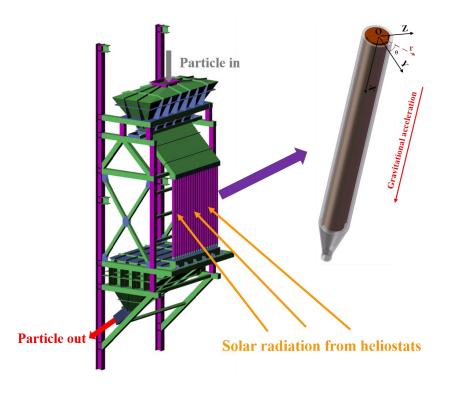

$$oldsymbol{\eta} = rac{Q_{abs}}{Q_{input}}$$

主要结论

高吸收率、大颗粒粒径 (300-1100µm) 、薄颗粒层厚度利于提高效率。

理论模型与实验数据对比

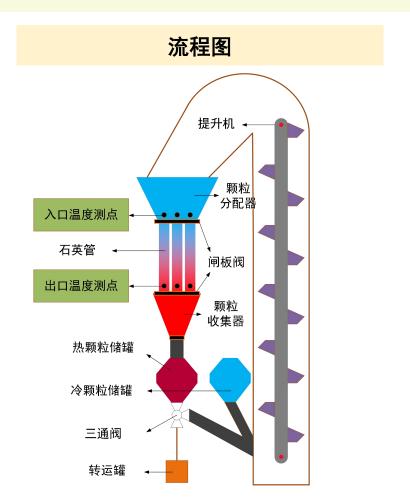
2.5 1MW热功率吸热器设计

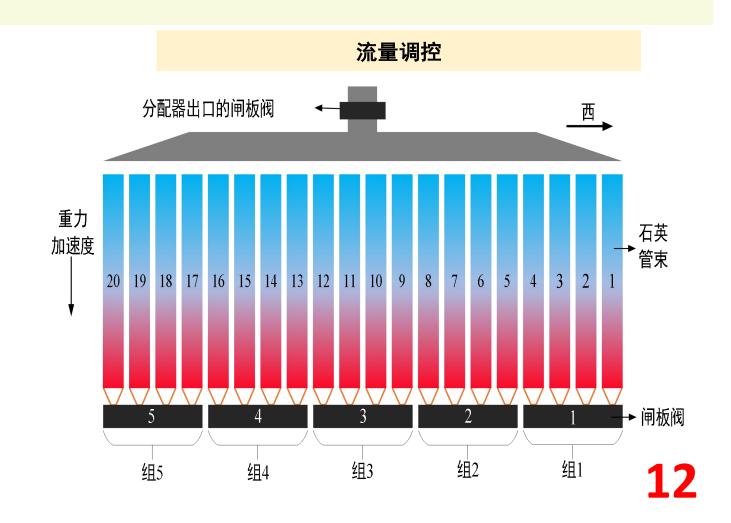

目标:颗粒出口温度≥800℃、热效率≥0.75

基本参数

(1) 颗粒:

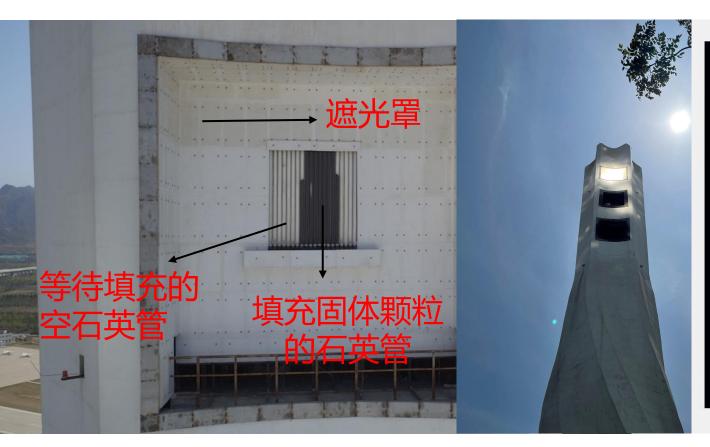
- 太阳光谱吸收率为 0.85,
- 红外发射率为 0.85,
- 平均直径为 542 μm.
- (2) 石英管
- 数量: 20根
- 长: 2.5m, 外径110mm, 内径100mm, 厚度5mm。
- (3) 固体颗粒流道
- 半环形颗粒层流道: 5mm。
- 漏斗半锥角30°,漏斗出口直径20 mm

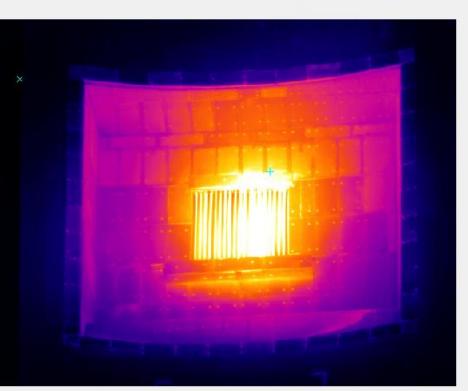

结构



2.6 吸热器系统

目标:颗粒连续加热、可循环加热



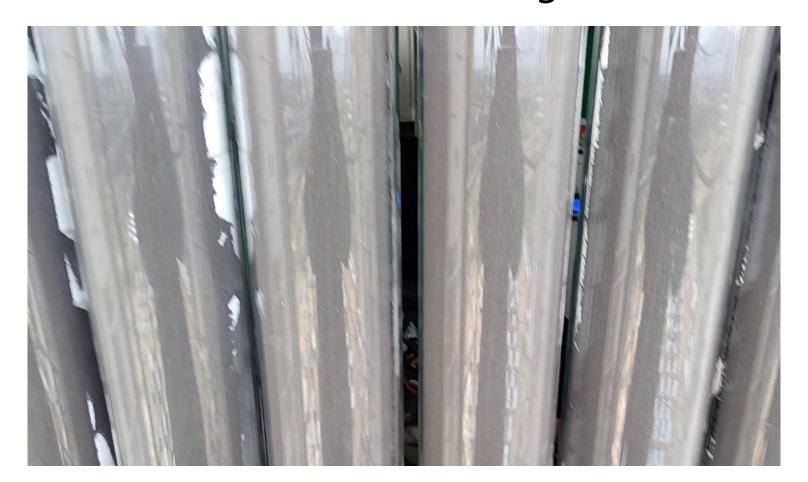


852.05

2.6 吸热器系统

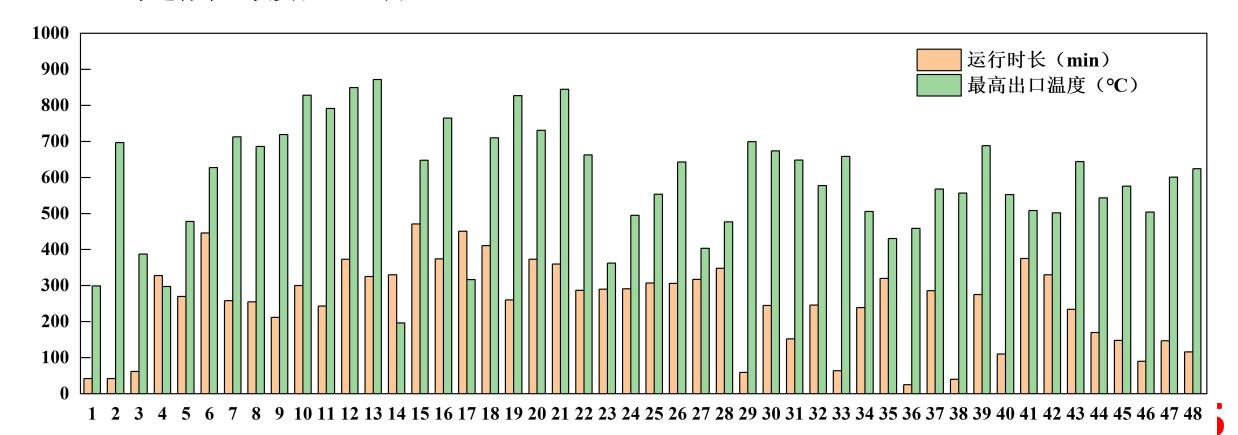
冷态实验

热态实验

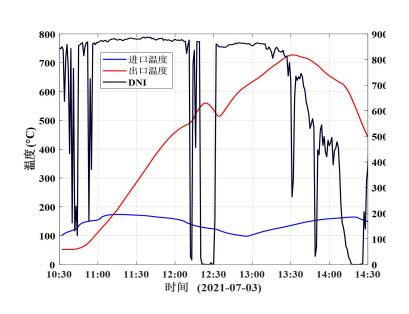

热态实验过程中红外热像仪图片

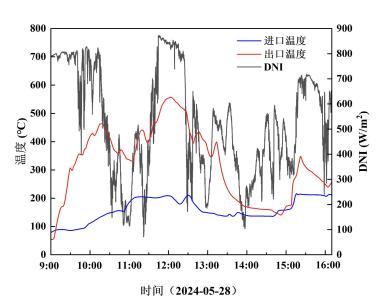
13

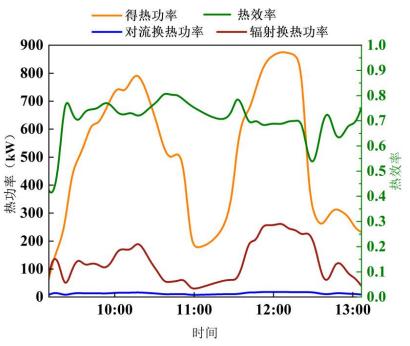
2.7 吸热器冷态流动


阀门开度40%时流动过程,流量150g/s,流速 29mm/s

2.8 吸热器热态实验


- · 2021年-2024年进行了48次实验,总时长200h。测点的颗粒出口最高温度845℃,最大热功率830kW
- 2025年进行了10次实验,总时长40h。




2.8 吸热器热态实验

实验中经历了数次短时间云遮、快速上镜、快速下镜过程,呈现出很强的抵抗瞬态变化能力,吸热器可快速启动和停机。

DNI、吸热器进口和出口温度随时间变化

吸热器得热功率及热效率随时间变化

(2024.05.28)

16

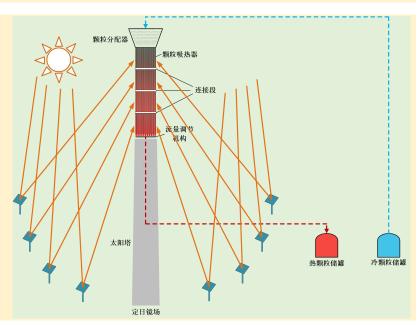
2.9 取得成果

发表文章10篇

- . Thermal performance testing and analysis of a 1 MWth quartz tube bundle solid particle solar receiver using the energy balance analysis method. Renewable Energy, 2026, 256:123895
- 2. 下一代太阳能热发电中固体颗粒吸热器研究进展,中国电机工程学报,2024,44(18):7293-7308
- 3. Numerical and experimental investigation on thermal performances of quartz tube gravity-driven solid particle solar receiver based on linear-focused solar furnace. Renewable Energy, 2023, 203:881-897
- 4. Theoretical and experimental investigation on heating moving packed beds in a single tube with constant wall temperature [J]. International Journal of Heat Mass Transf. 2021;180(6):121725.
- 5. Performance modeling of quartz tube for gravity-driven solid particle solar receiver[J]. International Journal of Heat and Mass Transfer, 2023, 207.
- 6. On-sun testing of a 1 MWth quartz tube bundle solid particle solar receiver. Renewable Energy, 2022, 193:383-397
- 7. Solid particle solar receivers in the next-generation concentrated solar power plant, EcoMat. 2022;e12207.原文链接: https://doi.org/10.1002/eom2.12207
- 8. A CPFD simulation on the particle flow characteristics in a packed moving bed solar receiver with an added insert. Solar Energy, 2021, 224: 1144–1159
- 9. Theoretical and experimental investigation on heating moving packed beds in a single tube with constant wall temperature. International Journal of Heat and Mass Transfer, 2021, 180:121725
- 10. Experimental and numerical investigation on thermal performance of a quartz tube solid particle solar receiver. Solar Energy, 2020,207:1055-1069

申请发明专利8项

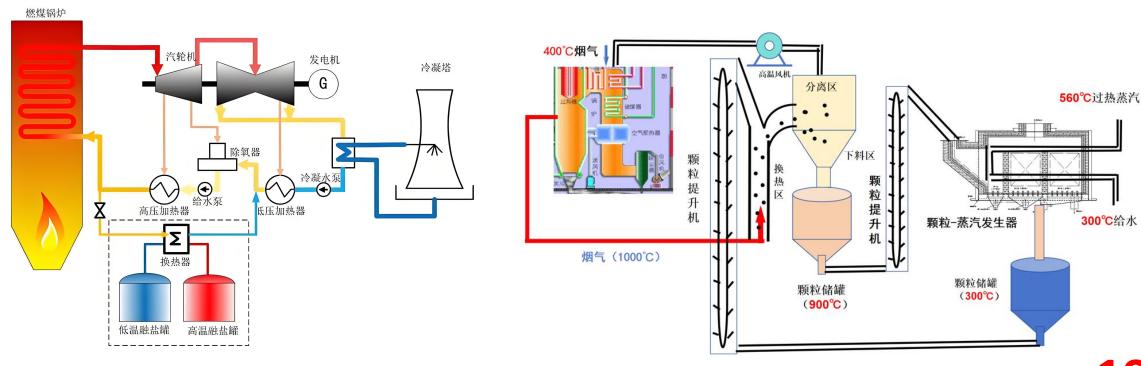
- 1. 白凤武, 余裕璞, 王志峰. 一种太阳能热发电用螺旋轴式固体颗粒吸热器. 申请号: 202211458289. 2, 申请日: 2022-11-07.
- 2. 白凤武, 余裕璞, 张喜良, 王志峰. 一种填充异形陶瓷管的太阳能热发电用固体颗粒吸热器. 申请号: 202210227276. 8, 申请日: 2022-03-10.
- 3. 余裕璞, 白凤武, 王志峰. 一种金属管-石英玻璃管连接结构及方法. 申请号: 202111520933. X, 申请日: 2021-12-13.
- 4. 余裕璞, 白凤武, 王志峰. 一种利用固体颗粒储热的储电系统. 申请号: CN201911238548. 9. 申请日: 2019-12-06.
- 5. 余裕璞, 白凤武, 王志峰. 一种电加热固体颗粒系统. 申请号: CN202011245444. 3. 申请日: 2020-11-20.
- 6. 聂辅亮,白凤武,王志峰. 一种塔式太阳能热发电用多级固体颗粒吸热器. 申请号: CN201811601118.4,申请日: 2018年12月26日
- 7. 聂辅亮, 白凤武, 王志峰. 一种太阳能热发电用固体颗粒吸热器. 申请号: 201810148613.8, 申请日: 2018年2月13日
- 8. 聂辅亮,白凤武,王志峰. 一种太阳能热发电用延缓下落式固体颗粒吸热器. 申请号: 201810148621.2,申请日: 2018年2月13日



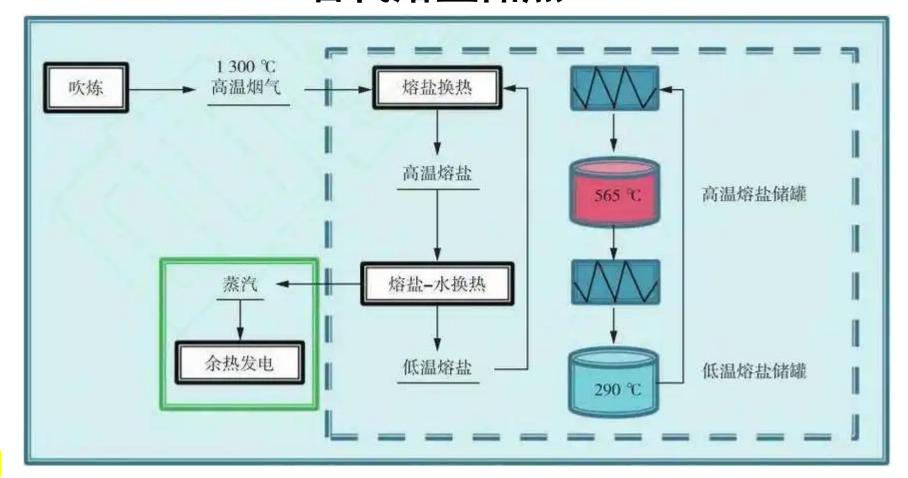
2.10 小结

- 固体颗粒吸热器实验获得了845℃的固体颗粒。
- 吸热器运行平稳,可耐受较高热流而且分布高度不均的工况,启动快。

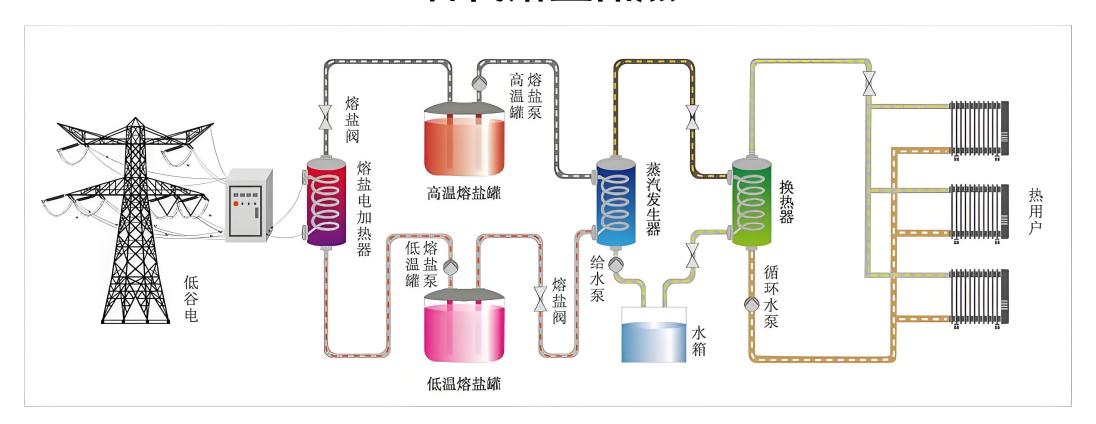
大型化应用挑战


- 低成本高性能固体颗粒
- 100MWth级、800°C高效颗粒吸热器
- 每天数万吨300-800℃颗粒的低能耗流畅转运技术
- 数干立方米容积、耐受800℃的高温颗粒储罐技术

3.1 固体颗粒储热助力燃煤电厂调峰


替代熔盐储热

3.2 工业余热利用,固体颗粒储热供应蒸汽


替代熔盐储热

3.3 吸纳可再生能源电力,固体颗粒储热供应蒸汽

替代熔盐储热

3.4 固体颗粒储热的优势(与二元硝酸熔盐对比)

储热材料	化学成分	使用温度	密度(kg/m³)	比热 (kJ/kgK)	温升1℃的 体积储热密 度(kJ/m³K)	成本(元 / 吨)	成本(元 /m³)	温升1℃时 单位储热 量材料成 本(元/kJ)
固体颗粒	氧化铝、氧化铁、氧化锰等	环温- 1300℃	1700(堆积态)	1.05	1785	2500	4250	2.38
二元硝酸盐	硝酸钾 (KNO3)w/% 40.0±0.5 硝酸钠 (NaNO3) w/% 60.0±0.5	290°C- 565°C	1900-1730	1.56	2888(取冷 盐为参考)	5000	9500	3.21

3.4 固体颗粒储热的优势(与二元硝酸熔盐对比)

储热 材料	容器与管 道材料	输送设备	电加热器	蒸汽发生器	阀门	料位计	防凝固措施	腐蚀性	耐磨性
固体颗粒	耐热钢材	颗粒提 升机	6kV-10kV	气固两 相换热	闸板阀	雷达	不需要	无	高流速下需考虑
二元硝酸盐	耐高温、抗腐蚀	熔盐泵	6kV-10kV	熔盐蒸 汽发生 器	熔盐阀	雷达	电伴热	强	无

3.5 案例分析

西藏某项目,消纳光伏弃电,日产蒸汽360吨,参数0.5MPa,152℃饱和蒸汽。电加热时间8小时,供汽16小时

- □ 从10°C给水加热到0.5MPa,152°C的饱和蒸汽焓值是2811.7kJ/kg-41.87kJ/kg=2769.8kJ/kg
- □ 加热360吨蒸汽需要能量: 360×2769.8=997.1GJ=277MWh
- □ 系统总效率: 电加热器效率0.95, 储热效率0.97, 蒸汽发生器效率0.98, 0.95×0.97×0.98=0.9
- □ 电能消耗: 277MWh÷0.9=307.8MWh
- □ 电加热功率: 307.8÷8=38.5MW。考虑冗余, 电加热器功率按照50MW选型。
- □ 蒸汽发生器释放能量: 277MWh÷0.98=283MWh,功率,283÷16=17.7MW,<mark>可按25MW选型</mark>。
- □ 储热量: 277÷0.98÷0.97=291.4MWh, 可按照300MWh选型。
- **□** 颗粒储热温差,500°C,高温650°C,低温150°C。
- 单位质量储热量: 1.05×500=145.8kWh/t
- □ 理论颗粒质量: 300÷0.1458=2058吨。
- □ 理论储罐容积: 2058÷1.7=1211m³
- □ 冗余系数: 1.05,颗粒质量 2058×1.05=2161吨,颗粒容积: 1272m³

3.5 案例分析

设备名称	技术参数	数量	设备单价	设备投资(万元)
陶瓷颗粒	耐1200℃	2160吨	0.25万元/吨	540. 25
低温颗粒储罐	耐150℃	1270.5m ³	0.2万元/m³	254. 4
高温颗粒储罐	耐650℃	1270.5m³	0.4万元/m³	508.8
颗粒提升机	耐150℃,提升50m,300t/h	1台	150万元/台	150
颗粒提升机	耐650℃,提升50m,300t/h	1台	300万元台	300
电加热器	50MW, 6kV-10kV	1台	1600万元/台	1600
颗粒蒸汽发生器	20MW,颗粒侧650℃-150℃,蒸 汽侧10℃-152℃	1台	800万元/台	800
阀门、测控仪表与主控	满足工程需要	1套	200万元/套	200
工程费用		1项	800万元/项	800
税费及不可预见费		1项	800万元/项	800
合计费用				5953. 45
单位储热成本				198.4元/kWh

3.5 案例分析

西藏某项目,消纳光伏弃电,日产蒸汽360吨,参数0.5MPa,152℃饱和蒸汽。电加热时间8小时,供汽16小时

- □ 从10°C给水加热到0.5MPa, 152°C的饱和蒸汽焓值是2811.7kJ/kg-41.87kJ/kg=2769.8kJ/kg
- □ 加热360吨蒸汽需要能量: 360×2769.8=997.1GJ=277MWh
- □ 系统总效率: 电加热器效率0.95, 储热效率0.97, 蒸汽发生器效率0.98, 0.95×0.97×0.98=0.9
- □ 电能消耗: 277MWh÷0.9=307.8MWh
- □ 电加热功率: 307.8÷8=38.5MW。考虑冗余, 电加热器功率按照40MW选型。
- □ 蒸汽发生器释放能量: 277MWh÷0.98=283MWh,功率,283÷16=17.7MW,<mark>可按20MW选型</mark>。
- □ 储热量: 277÷0.98÷0.97=291.4MWh, 可按照300MWh选型。
- □ 熔盐储热温差,275℃,高温565℃,低温290℃;**290℃时密度是1900kg/m³,565℃时密度1730kg/m³**
- □ 单位质量储热密度: 1.56×275=119.1kWh/t
- □ 理论熔盐质量: 300÷0.1191=2519吨
- □ 低温储罐容积: 2519÷1.9=1326m³
- □ 高温储罐容积: 2519÷1.73=1456m³
- □ 颗粒冗余系数: 1.05,颗粒质量2519×1.05=2645吨,低温储罐容积: 1326×1.05=1392m³,高温储罐容积: 1456×1.05=1529m³

3.5 案例分析

设备名称	技术参数	数量	设备单价	设备投资(万元)
熔盐	硝酸钠与硝酸钾	2645吨	0.5万元/吨	1322.5
低温熔盐储罐	耐 400℃	1392m³	0.3万元/m³	417.6
高温熔盐储罐	耐 580℃	1529m³	0.5万元/m³	764.5
低温盐泵	400°C	1台	150万元/台	150
高温盐泵	580°C	1台	300万元台	300
电加热器	40MW, 6kV-10kV	1台	1600万元/台	1600
熔盐蒸汽发生器	20MW,熔盐侧565℃-290℃,蒸汽侧10℃-152℃	1台	800万元/台	800
阀门、测控仪表与主控	满足工程需要	1套	200万元/套	200
工程费用		1项	800万元/项	800
税费及不可预见费		1项	800万元/项	800
合计费用				7154.6
单位储热成本				238.5元/kWh

3.5 案例分析

初步的工程概算,300MWh储热量的电加热储热供蒸汽系统

采用固体颗粒 198.4元/kWh

采用太阳盐 238.5元/kWh

固体颗粒储热具有储投资低于太阳盐的优势

固体颗粒无相变,使用过程无需伴热措施,安全性好。

✓ 国家重点研发计划项目 "超临界CO2太阳能热发电关键基础问题研究"课题 "高温吸热器工作原理及设计方法" (课题编号 2018YFB1501001)

✓ 国家自然科学基金面上项目"石英管束内直接吸收式固体颗粒吸热器流动与传热机理研究"(项目号: 51976213)

✓ 北京市科委项目"第四代光热发电高温固体吸热器研究" (项目编号 Z181100004718002)

山东电建三公司:安丰路主任、董继元高工等 首 航 高 科:高峰总经理、李黄成高工、刘建刚工程师等 中科院电工所:王志峰老师,余裕璞博士,聂辅亮博士,李均博 士、孙飞虎博士、张喜良高工、刘鸿工程师、阮轶工程师、陈金萍 工程师、胡峰博士,王皓,杨熠辉,郭东,任皓,姚磐等

白凤武,中科院电工所, 13146183072,微信同号